Formes multilinéaires alternées

Lemnouar Noui; Philippe Revoy

Annales mathématiques Blaise Pascal (1994)

  • Volume: 1, Issue: 2, page 43-69
  • ISSN: 1259-1734

How to cite

top

Noui, Lemnouar, and Revoy, Philippe. "Formes multilinéaires alternées." Annales mathématiques Blaise Pascal 1.2 (1994): 43-69. <http://eudml.org/doc/79104>.

@article{Noui1994,
author = {Noui, Lemnouar, Revoy, Philippe},
journal = {Annales mathématiques Blaise Pascal},
keywords = {vector space; -vectors; linear group; alternating forms; Schouten's classification; finite fields},
language = {fre},
number = {2},
pages = {43-69},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Formes multilinéaires alternées},
url = {http://eudml.org/doc/79104},
volume = {1},
year = {1994},
}

TY - JOUR
AU - Noui, Lemnouar
AU - Revoy, Philippe
TI - Formes multilinéaires alternées
JO - Annales mathématiques Blaise Pascal
PY - 1994
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 1
IS - 2
SP - 43
EP - 69
LA - fre
KW - vector space; -vectors; linear group; alternating forms; Schouten's classification; finite fields
UR - http://eudml.org/doc/79104
ER -

References

top
  1. [1] M. André;, Algèbre homologique des anneaux locaux à corps résiduels de caractéristique 2, Sém. P. Dubreuil, Paris, 1977-1978, Lect. Notes740, p. 237-242 Zbl0409.13006MR563507
  2. [2] N. Bourbaki, Algèbre, Chapitre 1 à 3, Hermann, Paris, 1970. Zbl0211.02401
  3. [3] N. Bourbaki, Algèbre, Chapitre 9, Hermann, Paris, 1959. Zbl0102.25503
  4. [4] A. Cohen et A. Helminck, Trilinear alternating forms on a vector space of dimension 7, Comm. in Algebra16 (1), 1988, p. 1-25. Zbl0646.15019MR921939
  5. [5] D. Djokovics, Classification of trivectors of an eight dimensional real vector space, Lin. and multilin. Algebra, 13 (3),1983,p. 3-39. Zbl0515.15011MR691457
  6. [6] G.B. Gurevitch, Theory of algebraic invariants, P. Noordhof LTD, Groningen, the Netherland, 1964. Zbl0128.24601
  7. [7] H. Hijikata, A remark on the groups of type G2 and F4, J. Math. Soc. Jap. vol. 15, 2, 1963, p. 159-164. Zbl0115.02701MR151457
  8. [8] J. Igusa, Arithmetic of a singular invariant, Amer. J. of Math.100, 2, 1988, p. 197-233. Zbl0662.12014MR935005
  9. [9] N. Jacobson, Cayley numbers and normal simple Lie algebras of type G. Duke Math. J.5, 1939, p. 775-783. Zbl0022.19801MR598
  10. [10] B. Kahn, Sommes de tenseurs décomposables, prépublication de l'université Paris VII, mai 1991, 28 p. et correspondance personnelle. 
  11. [11] T. Kimura, On the construction of some relative invariants for Gl(n), n = 6, 7, 8, by the decomposition of the Young diagrams, Sém. Alg. P. Dubreil et M.P. Malliavin, 1980, Lect. Notes867, p. 38-48. Zbl0472.14023MR633513
  12. [12] A. Médina, et Ph. Revoy, Algèbres de Lie et produits scalaires invariants, Ann. E.N.S. t. 18, 1985, p. 553-561. Zbl0592.17006MR826103
  13. [13] Ph. Revoy, Formes alternées et puissances divisées, Sém. P. Dubreil, 26ème année, 1972-73. Zbl0336.15016MR319968
  14. [14] Ph. Revoy, Trivecteurs de rang 6, in Coll. sur les formes quadratiques, Mémoire SMF59, 1979, p. 141-155. Zbl0405.15024MR532012
  15. [15] P. Revoy, Formes trilinéaires alternées de rang 7, Bull. Sc. Math.112, 1988, p. 357-368. Zbl0668.15015MR975369
  16. [16] N. Roby, Les algèbres à puissances divisées, Bull. Sc. Math.89, 1965, p. 75-91. Zbl0145.04503MR193127
  17. [17] J. Schouten, Klassifizierung der alternierenden Grössendritten Grades in 7 dimensions, Rend. Circ. Mat. Palermo, 55, 1931, p. 137-156. Zbl0001.35401
  18. [18] J.P. Serre, Corps locaux, Hermann, Paris, 1968. Zbl0137.02601MR354618
  19. [19] E. Vinberg et A. Elasvili, Classification of trivectors of a nine-dimensional space, Trudy. Sem. Vekt. Tenz. Analyizn, MGU nXIX, 1979, p. 155-177. MR504529
  20. [20] A. Weil, Algebras with involution and classical groups, J. Indian. Math. Soc.24, 1961, p. 589-623. Zbl0109.02101MR136682
  21. [21] R. Westwick, Real trivectors of rank seven, Lin. and multilin. Algebra, 10 (3), 1981, p. 183-204. Zbl0464.15001MR630147

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.