Limited spaces

N. De Grande-De Kimpe; C. Perez-Garcia

Annales mathématiques Blaise Pascal (1995)

  • Volume: 2, Issue: 1, page 117-129
  • ISSN: 1259-1734

How to cite

top

De Grande-De Kimpe, N., and Perez-Garcia, C.. "Limited spaces." Annales mathématiques Blaise Pascal 2.1 (1995): 117-129. <http://eudml.org/doc/79108>.

@article{DeGrande1995,
author = {De Grande-De Kimpe, N., Perez-Garcia, C.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {non-archimedean locally convex Hausdorff spaces; limited spaces; BL- spaces; nuclear},
language = {eng},
number = {1},
pages = {117-129},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Limited spaces},
url = {http://eudml.org/doc/79108},
volume = {2},
year = {1995},
}

TY - JOUR
AU - De Grande-De Kimpe, N.
AU - Perez-Garcia, C.
TI - Limited spaces
JO - Annales mathématiques Blaise Pascal
PY - 1995
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 2
IS - 1
SP - 117
EP - 129
LA - eng
KW - non-archimedean locally convex Hausdorff spaces; limited spaces; BL- spaces; nuclear
UR - http://eudml.org/doc/79108
ER -

References

top
  1. [1] J. Bonet, A question of Valdivia on quasinormable Fréchet spaces, Canad. Math. Bull.34 (3) (1991), 301-304. Zbl0698.46002MR1127750
  2. [2] J. Bonet, M. Lindström, and M. Valdivia, Two theorems of Josefson-Nissenzweig type for Fréchet spaces, Proc. Amer. Math. Soc.117 (1993), 363-364. Zbl0785.46002MR1136233
  3. [3] J. Bourgain and J. Diestel, Limited operators and strict cosingularity, Math. Nachr.119 (1984), 55-58. Zbl0601.47019MR774176
  4. [4] N. De Grande-De Kimpe, On spaces of operators between locally K-convex spaces, Proc. Kon. Ned. Akad. v. Wet. A75 (1972), 113-129. Zbl0235.46013MR303351
  5. [5] =====, Structure theorems for locally K-convex spaces, Proc. Kon. Ned. Akad. v. Wet. A80 (1977), 11-22. Zbl0343.46005MR430720
  6. [6] =====, Non-archimedean nuclearity, Groupe d'étude d'analyse ultramétrique, Institut Henri-Pincaré, Paris (1982). 
  7. [7] N. De Grande-De Kimpeand S. Navarro, Non-archimedean nuclearity and spaces of continuous functions, Indag. Math. N.S., 2 (1991), 201-206. Zbl0746.54004MR1123361
  8. [8] =====, The non-archimedean space BC(X) with the strict topology, Publicacions Matemátiques37 (1993). 
  9. [9] N. De Grande-De Kimpeand C. Perez-Garcia, Non-archimedean GP-spaces, Bulletin of the Belgian Mathematical Society, Simon Stevin1 (1994), 99-105. Zbl0812.46075MR1314924
  10. [10] =====, Two new operator-ideals in non-archimedean Banach spaces, In: p-adic Functional Analysis, N. De Grande-De Kimpe, S. Navarro and W.H. Schikhof, Universidad de Santiago, Chile (1994), 33-43. 
  11. [11] N. De Grande-De Kimpe, C. Perez-Garcia and W.H. Schikhof, Non-archimedean t-frames and FM-spaces, Canad. Math. Bull.35 (2) (1992), 1-9. Zbl0739.46057MR1191506
  12. [12] H. Jarchow, Locally convex spaces, B.G. Teubner, Stuttgart, 1981. Zbl0466.46001MR632257
  13. [13] B. Josefson, Weak sequential convergence in the dual of a Banach space does not imply norm convergence, Ark. Math.13 (1975), 78-89. Zbl0303.46018MR374871
  14. [14] A.K. Katsaras, Non-archimedean Kõthe sequence spaces, Bolletino U.M.I (7), 5-B (1991), 703-725. Zbl0779.46053MR1127019
  15. [15] T. Kiyosawa, On spaces of compact operators in non-archimedean Banach spaces, Canad. Math. Bull.32 (4) (1989), 450-458. Zbl0685.46053MR1019411
  16. [16] G. Köthe, Topological vector spaces I, Springer-Verlag, Berlin, 1969. Zbl0179.17001
  17. [17] M. Lindström, A characterization of Schwartz spaces, Math. Z.198 (1988), 423-430. Zbl0653.46007MR946613
  18. [18] M. Lindström and T. Schlumprecht, On limitedness in locally convex spaces, Arch. Math.53 (1989), 65-74. Zbl0685.46001MR1005171
  19. [19] N. Nissenzweig, w*-sequential convergence, Israel J. Math22 (1975), 266-272. Zbl0341.46012MR394134
  20. [20] C. Perez-Garcia, On compactoidity in non-archimedean locally convex spaces with a Schauder basis, Proc. Kon. Ned. Akad. v. Wet. A91 (1988), 85-88. Zbl0648.46069MR934476
  21. [21] C. Perez-Garcia and W.H. Schikhof, Compact operators and the Orlicz-Pettis property in p-adic analysis, Report 9101, Department of Mathematics, Catholic University, Nijmegen, The Netherlands (1991), 1-27. MR1252732
  22. [22] A. Pietsch, Operators ideals, North-Holland, Amsterdam, 1980. Zbl0434.47030MR582655
  23. [23] W.H. Schikhof, Locally convex spaces over non-spherically complete valued fields I-II, Bull. Soc. Math. Belgique (ser.B) XXXVIII (1986), 187-224. Zbl0615.46071MR871313
  24. [24] =====, The continuous linear image of a p-adic compactoid, Proc. Kon. Ned. Akad. v. Wet. A92 (1989), 119-123. Zbl0696.46053MR993683
  25. [25] A.C.M. van Rooij, Non-archimedean Functional Analysis, Marcel Dekker, New York, 1978. Zbl0396.46061MR512894

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.