On the definition of a compactoid

S. Oortwijn

Annales mathématiques Blaise Pascal (1995)

  • Volume: 2, Issue: 1, page 201-215
  • ISSN: 1259-1734

How to cite

top

Oortwijn, S.. "On the definition of a compactoid." Annales mathématiques Blaise Pascal 2.1 (1995): 201-215. <http://eudml.org/doc/79116>.

@article{Oortwijn1995,
author = {Oortwijn, S.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {locally convex modules over the valuation ring of a non-Archimedean valued field; compactoid module; compact-like properties},
language = {eng},
number = {1},
pages = {201-215},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {On the definition of a compactoid},
url = {http://eudml.org/doc/79116},
volume = {2},
year = {1995},
}

TY - JOUR
AU - Oortwijn, S.
TI - On the definition of a compactoid
JO - Annales mathématiques Blaise Pascal
PY - 1995
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 2
IS - 1
SP - 201
EP - 215
LA - eng
KW - locally convex modules over the valuation ring of a non-Archimedean valued field; compactoid module; compact-like properties
UR - http://eudml.org/doc/79116
ER -

References

top
  1. [1] I. Fleischer, Modules of finite rank over Prüfer rings. Annals of Math.65 (1957), 250-254 Zbl0213.32002MR85237
  2. [2] N. De Grande-De Kimpe, The non-archimedean space C∞(X). Comp. Math.48 (1983), 297-309. Zbl0509.46063MR700742
  3. [3] L. Gruson, Catégories d'espaces de Banach ultramétriques. Bull. Soc. Math. France94 (1966), 287-299. Zbl0149.34801MR218873
  4. [4] L. Gruson and M. van der Put, Banach spaces. Bull. Soc. Math. France, Mém.39–40 (1974), 55-100. Zbl0312.46029MR365173
  5. [5] A.K. Katsaras, On compact operators between non-archimedean spaces. Anales Soc. Scientifique Bruxelles96 (1982), 129-137. Zbl0508.46052MR695359
  6. [6] W.H. Schikhof, Locally convex spaces over non-spherically complete valued fields. Bull. Soc. Math. Belg. Sér. B38 (1986), 187-224. Zbl0615.46071MR871313
  7. [7] W.H. Schikhof, A complementary variant of c-compactness in p-adic functional analysis. Report 8647, Mathematisch Instituut, Katholieke Universiteit, Nijmegen (1986). 
  8. [8] W.H. Schikhof, Compact-like sets in non-archimedean functional analysis. Proceedings of the Conference on p-adic analysis, Hengelhoef (1986). Zbl0628.46079MR921866
  9. [9] W.H. Schikhof, p-adic local compactoids. Report 8802, Mathematisch Instituut, Katholieke Universiteit, Nijmegen (1988). MR1254006
  10. [10] W.H. Schikhof, Zero sequences in p-adic compactoids. In p-adic Functional Analysis, J.M. Bayod, N. De Grande-De Kimpeand J. Martinez-Maurica, Marcel Dekker, New York (1991), 177-189. MR1152582
  11. [11] T.A. Springer, Une notion de compacité dans la théorie des espaces vectoriels topologiques. Indag. Math.27 (1965), 182-189. Zbl0128.34002MR180836

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.