On the definition of a compactoid
Annales mathématiques Blaise Pascal (1995)
- Volume: 2, Issue: 1, page 201-215
- ISSN: 1259-1734
Access Full Article
topHow to cite
topOortwijn, S.. "On the definition of a compactoid." Annales mathématiques Blaise Pascal 2.1 (1995): 201-215. <http://eudml.org/doc/79116>.
@article{Oortwijn1995,
author = {Oortwijn, S.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {locally convex modules over the valuation ring of a non-Archimedean valued field; compactoid module; compact-like properties},
language = {eng},
number = {1},
pages = {201-215},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {On the definition of a compactoid},
url = {http://eudml.org/doc/79116},
volume = {2},
year = {1995},
}
TY - JOUR
AU - Oortwijn, S.
TI - On the definition of a compactoid
JO - Annales mathématiques Blaise Pascal
PY - 1995
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 2
IS - 1
SP - 201
EP - 215
LA - eng
KW - locally convex modules over the valuation ring of a non-Archimedean valued field; compactoid module; compact-like properties
UR - http://eudml.org/doc/79116
ER -
References
top- [1] I. Fleischer, Modules of finite rank over Prüfer rings. Annals of Math.65 (1957), 250-254 Zbl0213.32002MR85237
- [2] N. De Grande-De Kimpe, The non-archimedean space C∞(X). Comp. Math.48 (1983), 297-309. Zbl0509.46063MR700742
- [3] L. Gruson, Catégories d'espaces de Banach ultramétriques. Bull. Soc. Math. France94 (1966), 287-299. Zbl0149.34801MR218873
- [4] L. Gruson and M. van der Put, Banach spaces. Bull. Soc. Math. France, Mém.39–40 (1974), 55-100. Zbl0312.46029MR365173
- [5] A.K. Katsaras, On compact operators between non-archimedean spaces. Anales Soc. Scientifique Bruxelles96 (1982), 129-137. Zbl0508.46052MR695359
- [6] W.H. Schikhof, Locally convex spaces over non-spherically complete valued fields. Bull. Soc. Math. Belg. Sér. B38 (1986), 187-224. Zbl0615.46071MR871313
- [7] W.H. Schikhof, A complementary variant of c-compactness in p-adic functional analysis. Report 8647, Mathematisch Instituut, Katholieke Universiteit, Nijmegen (1986).
- [8] W.H. Schikhof, Compact-like sets in non-archimedean functional analysis. Proceedings of the Conference on p-adic analysis, Hengelhoef (1986). Zbl0628.46079MR921866
- [9] W.H. Schikhof, p-adic local compactoids. Report 8802, Mathematisch Instituut, Katholieke Universiteit, Nijmegen (1988). MR1254006
- [10] W.H. Schikhof, Zero sequences in p-adic compactoids. In p-adic Functional Analysis, J.M. Bayod, N. De Grande-De Kimpeand J. Martinez-Maurica, Marcel Dekker, New York (1991), 177-189. MR1152582
- [11] T.A. Springer, Une notion de compacité dans la théorie des espaces vectoriels topologiques. Indag. Math.27 (1965), 182-189. Zbl0128.34002MR180836
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.