Generalized lifting modules.
Wang, Yongduo, Ding, Nanqing (2006)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Wang, Yongduo, Ding, Nanqing (2006)
International Journal of Mathematics and Mathematical Sciences
Similarity:
J. Paseka (2002)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Wang, Yongduo (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Wang, Yongduo (2007)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Wang, Yongduo, Sun, Qing (2007)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Goro Azumaya (1990)
Publicacions Matemàtiques
Similarity:
Let M be a left module over a ring R. M is called a Zelmanowitz-regular module if for each x ∈ M there exists a homomorphism F: M → R such that f(x) = x. Let Q be a left R-module and h: Q → M a homomorphism. We call h locally split if for every x ∈ M there exists a homomorphism g: M → Q such that h(g(x)) = x. M is called locally projective if every epimorphism onto M is locally split. We prove that the following conditions are equivalent: (1) M is Zelmanowitz-regular. ...
Jan R. Strooker (1990)
Banach Center Publications
Similarity:
Siamak Yassemi (2001)
Archivum Mathematicum
Similarity:
In this paper the concept of the second submodule (the dual notion of prime submodule) is introduced.