Compactification and compactoidification

E. Beckenstein; L. Narici; W. Schikhof

Annales mathématiques Blaise Pascal (1995)

  • Volume: 2, Issue: 1, page 43-50
  • ISSN: 1259-1734

How to cite


Beckenstein, E., Narici, L., and Schikhof, W.. "Compactification and compactoidification." Annales mathématiques Blaise Pascal 2.1 (1995): 43-50. <>.

author = {Beckenstein, E., Narici, L., Schikhof, W.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {continuously extended; Banaschewski compactification; ultraregular space; compactoidification; complete absolutely convex compactoid},
language = {eng},
number = {1},
pages = {43-50},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Compactification and compactoidification},
url = {},
volume = {2},
year = {1995},

AU - Beckenstein, E.
AU - Narici, L.
AU - Schikhof, W.
TI - Compactification and compactoidification
JO - Annales mathématiques Blaise Pascal
PY - 1995
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 2
IS - 1
SP - 43
EP - 50
LA - eng
KW - continuously extended; Banaschewski compactification; ultraregular space; compactoidification; complete absolutely convex compactoid
UR -
ER -


  1. [1] Bachman, G., Beckenstein, E., Narici, L. AND Warner, S.Rings of continuous functions with values in a topological field, Trans. Amer. Math. Soc.204, 1975, 91-112. Zbl0299.54016MR402687
  2. [2] Banaschewski, B.. Über nulldimensionale Räume, Math. Nachr.13, 1955, 129-140. Zbl0064.41303MR86287
  3. [3] Beckenstein, E., Narici, L. AND Suffel, C.Topological algebras, North-Holland Mathematics Studies 24, Notas de Matemática60, New York: North-Holland Publishing Co., 1977. Zbl0348.46041MR473835
  4. [4] Birkhoff, G.. Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications 25, Providence, R.I.: 1967. Zbl0153.02501MR227053
  5. [5] Engelking, R., AND Ówka, S.On E-compact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.6, 1958, 429-436. Zbl0083.17402MR97042
  6. [6] Halmos, P.Lectures on Boolean algebras, New York: Springer-Verlag, 1974. Zbl0285.06010
  7. [7] Pierce, R.S.Rings of integer-valued continuous functions, Trans. Amer. Math. Soc.100, 1961, 371-394. Zbl0196.15401MR131438
  8. [8] Prolla, J.B.Topics in functional analysis over valued division rings, North-Holland Mathematics Studies 77, Notas de Matemática89, New York: North-Holland Publishing Co., 1982. Zbl0506.46059MR688308
  9. [9] Schikhof, W.Locally convex spaces over non-spherically complete valued fields I, II, Bull Soc. Math. Belg. Sér. B38, 1986, 187-224. Zbl0615.46071MR871313
  10. [10] Schikhof, W.The closed convex hull of a compact set in a non-Archimedean locally convex space, Report 8646, Mathematics Department, Catholic University, Nijmegen, The Netherlands, 1986. 
  11. [11] Schikhof, W.The equalization of p-adic Banach spaces and compactoids, in P-adic Functional Analysis, 129-149, edited by N. De Grande-De Kimpe, S. Navarro and Wim H. Schikhof , Editorial Universidad de Santiago, Santiago, Chile : 1994. MR1103817
  12. [12] Stone, M.Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc.41, 1937, 375-481. Zbl0017.13502MR1501905JFM63.1173.01
  13. [13] Springer, T.Une notion de compacité dans la théorie des espaces vectoriels topolgiques, Indag. Math., 27, 1965, 182-189. Zbl0128.34002MR180836
  14. [14] A. Van Rooij, Non-archimedean functional analysis, New York: Marcel Dekker, 1978. Zbl0396.46061MR512894
  15. [15] J. Van Tiel, Espaces localement K-convexes, Indag. Math., 27, 1965, 249-289. Zbl0133.06502MR179593
  16. [16] Weir, M.Hewitt-Nachbin spaces, North-Holland Mathematics Studies 17, Notas de Matemática57, New York: North-Holland Publishing Co., 1975. Zbl0314.54002MR514909

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.