Page 1 Next

Displaying 1 – 20 of 50

Showing per page

Does C* -embedding imply C*-embedding in the realm of products with a non-discrete metric factor?

Valentin Gutev, Haruto Ohta (2000)

Fundamenta Mathematicae

The above question was raised by Teodor Przymusiński in May, 1983, in an unpublished manuscript of his. Later on, it was recognized by Takao Hoshina as a question that is of fundamental importance in the theory of rectangular normality. The present paper provides a complete affirmative solution. The technique developed for the purpose allows one to answer also another question of Przymusiński's.

Dugundji extenders and retracts on generalized ordered spaces

Gary Gruenhage, Yasunao Hattori, Haruto Ohta (1998)

Fundamenta Mathematicae

For a subspace A of a space X, a linear extender φ:C(A) → C(X) is called an L c h -extender (resp. L c c h -extender) if φ(f)[X] is included in the convex hull (resp. closed convex hull) of f[A] for each f ∈ C(A). Consider the following conditions (i)-(vii) for a closed subset A of a GO-space X: (i) A is a retract of X; (ii) A is a retract of the union of A and all clopen convex components of X; (iii) there is a continuous L c h -extender φ:C(A × Y) → C(X × Y), with respect to both the compact-open topology and...

Extending real-valued functions in βκ

Alan Dow (1997)

Fundamenta Mathematicae

An Open Coloring Axiom type principle is formulated for uncountable cardinals and is shown to be a consequence of the Proper Forcing Axiom. Several applications are found. We also study dense C*-embedded subspaces of ω*, showing that there can be such sets of cardinality c and that it is consistent that ω*{pis C*-embedded for some but not all p ∈ ω*.

Currently displaying 1 – 20 of 50

Page 1 Next