On the thickness of topological spaces
Annales mathématiques Blaise Pascal (1995)
- Volume: 2, Issue: 2, page 25-33
- ISSN: 1259-1734
Access Full Article
topHow to cite
topBrunet, Bernard. "On the thickness of topological spaces." Annales mathématiques Blaise Pascal 2.2 (1995): 25-33. <http://eudml.org/doc/79137>.
@article{Brunet1995,
author = {Brunet, Bernard},
journal = {Annales mathématiques Blaise Pascal},
keywords = {small inductive dimension; large inductive dimension; covering dimension},
language = {eng},
number = {2},
pages = {25-33},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {On the thickness of topological spaces},
url = {http://eudml.org/doc/79137},
volume = {2},
year = {1995},
}
TY - JOUR
AU - Brunet, Bernard
TI - On the thickness of topological spaces
JO - Annales mathématiques Blaise Pascal
PY - 1995
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 2
IS - 2
SP - 25
EP - 33
LA - eng
KW - small inductive dimension; large inductive dimension; covering dimension
UR - http://eudml.org/doc/79137
ER -
References
top- (1) B. Brunet : On the dimension of ordered spaces, to appear. Zbl0905.54021MR1475806
- (2) R. Engelking : Dimension theory, (North-Holland, Amsterdam, 1978). Zbl0401.54029MR482697
- (3) V.V. Filippov : On the inductive dimension of the product of bicompacta,Soviet. Math. Dokl., 13 (1972), N° 1, 250-254. Zbl0243.54032MR292043
- (4) L. Haddad : Introduction à l'analyse non-standard, (Ecole d'Eté, Beyrouth, 1973).
- (5) O.V. Lokucievskii : On the dimension of bicompacta, (en russe), Dokl. Akad. Nauk S.S.S.R.67 (1949), 217-219. Zbl0033.02301MR30750
- (6) G. Nobeling : Uber eine n-dimensionale Universatmenge im IR2n+1, Math. Ann., 104 (1931), 71-80. JFM56.0506.02
- (7) J.P. Reveilles : Une définition externe de la dimension topologique, Note aux Comptes Rendus à l'Académie des Sciences, 299, Série 1, 14 (1984), 707-710. Zbl0572.54032
- (8) P. Roy : Nonequality of dimension for metric spaces, Trans. Amer. Math. Soc., 134 (1968), 117-132. Zbl0181.26002MR227960
- (9) E.K. Van Douwen : The small inductive dimension can be raised by the adjunction of a single point, Indagationes Mathematicae, 35 (1973), Fasc. 5, 434-442. Zbl0268.54033MR331347
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.