On the thickness of topological spaces

Bernard Brunet

Annales mathématiques Blaise Pascal (1995)

  • Volume: 2, Issue: 2, page 25-33
  • ISSN: 1259-1734

How to cite

top

Brunet, Bernard. "On the thickness of topological spaces." Annales mathématiques Blaise Pascal 2.2 (1995): 25-33. <http://eudml.org/doc/79137>.

@article{Brunet1995,
author = {Brunet, Bernard},
journal = {Annales mathématiques Blaise Pascal},
keywords = {small inductive dimension; large inductive dimension; covering dimension},
language = {eng},
number = {2},
pages = {25-33},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {On the thickness of topological spaces},
url = {http://eudml.org/doc/79137},
volume = {2},
year = {1995},
}

TY - JOUR
AU - Brunet, Bernard
TI - On the thickness of topological spaces
JO - Annales mathématiques Blaise Pascal
PY - 1995
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 2
IS - 2
SP - 25
EP - 33
LA - eng
KW - small inductive dimension; large inductive dimension; covering dimension
UR - http://eudml.org/doc/79137
ER -

References

top
  1. (1) B. Brunet : On the dimension of ordered spaces, to appear. Zbl0905.54021MR1475806
  2. (2) R. Engelking : Dimension theory, (North-Holland, Amsterdam, 1978). Zbl0401.54029MR482697
  3. (3) V.V. Filippov : On the inductive dimension of the product of bicompacta,Soviet. Math. Dokl., 13 (1972), N° 1, 250-254. Zbl0243.54032MR292043
  4. (4) L. Haddad : Introduction à l'analyse non-standard, (Ecole d'Eté, Beyrouth, 1973). 
  5. (5) O.V. Lokucievskii : On the dimension of bicompacta, (en russe), Dokl. Akad. Nauk S.S.S.R.67 (1949), 217-219. Zbl0033.02301MR30750
  6. (6) G. Nobeling : Uber eine n-dimensionale Universatmenge im IR2n+1, Math. Ann., 104 (1931), 71-80. JFM56.0506.02
  7. (7) J.P. Reveilles : Une définition externe de la dimension topologique, Note aux Comptes Rendus à l'Académie des Sciences, 299, Série 1, 14 (1984), 707-710. Zbl0572.54032
  8. (8) P. Roy : Nonequality of dimension for metric spaces, Trans. Amer. Math. Soc., 134 (1968), 117-132. Zbl0181.26002MR227960
  9. (9) E.K. Van Douwen : The small inductive dimension can be raised by the adjunction of a single point, Indagationes Mathematicae, 35 (1973), Fasc. 5, 434-442. Zbl0268.54033MR331347

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.