On differences of self-adjoint semigroups

Jan A. Van Casteren

Annales mathématiques Blaise Pascal (1996)

  • Volume: 3, Issue: 1, page 165-188
  • ISSN: 1259-1734

How to cite

top

Van Casteren, Jan A.. "On differences of self-adjoint semigroups." Annales mathématiques Blaise Pascal 3.1 (1996): 165-188. <http://eudml.org/doc/79146>.

@article{VanCasteren1996,
author = {Van Casteren, Jan A.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {generator of a strong Markov process; selfadjoint; positivity preserving; Kato-Feller potentials; Feynman-Kac semigroups},
language = {eng},
number = {1},
pages = {165-188},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {On differences of self-adjoint semigroups},
url = {http://eudml.org/doc/79146},
volume = {3},
year = {1996},
}

TY - JOUR
AU - Van Casteren, Jan A.
TI - On differences of self-adjoint semigroups
JO - Annales mathématiques Blaise Pascal
PY - 1996
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 3
IS - 1
SP - 165
EP - 188
LA - eng
KW - generator of a strong Markov process; selfadjoint; positivity preserving; Kato-Feller potentials; Feynman-Kac semigroups
UR - http://eudml.org/doc/79146
ER -

References

top
  1. 1. M.Sh. Birmanand M.Z. Solomyak, Double Stieltjes operator integrals I, Problemy Mat. Fyz.1 (1966), 33-67. Zbl0161.34602MR209872
  2. 2. M.Sh. Birmanand M.Z. Solomyak, Double Stieltjes operator integrals II, Problemy Mat. Fyz.2 (1967), 26-60. Zbl0182.46202MR234304
  3. 3. M.Sh. Birmanand M.Z. Solomyak, Double Stieltjes operator integrals III, Problemy Mat. Fyz.6 (1973), 27-53. MR348494
  4. 4. M.Sh. Birmanand M.Z. Solomyak, Operator integration, perturbations, and commutators, Zap. Nauchn. sem. Leningrad, Otdel. Inst. Steklov (LOMI)170 (1989), 34-66. Zbl0709.47022MR1039572
  5. 5. R.M. Blumenthal and R.K. Getoor, Markov processes and potential theory, Pure and Applied mathematics, vol. 29, Academic Press, New York, 1968, A series of monographs and textbooks. Zbl0169.49204MR264757
  6. 6. E.B. Davies, Spectral theory and differential operators, Cambridge Studies in Advanced Mathematics, vol. 42, Cambridge University Press, Cambridge, 1995. Zbl0893.47004MR1349825
  7. 7. M. Demuth and J.A. van Casteren, On spectral theory for Feller generators, Reviews in Mathematical Physics1, no. 4 (1989), 325-414. Zbl0715.60093MR1061118
  8. 8. M. Demuth and J.A. van Casteren, Perturbations of generalized Schrödinger operators in stochastic spectral analysis, Schrödinger Operators, the quantum mechanical many-body problem, Proceedings Conference Aarhus, 1991, Springer-Verlag, Berlin, 1992, pp. 1-15. Zbl0785.47036MR1181237
  9. 9. M. Demuth and J.A. van Casteren, Framework and results in stochastic spectral analysis, Operator Theory, Advances and Applications, vol. 70, Birkhäuser Verlag, Basel, 1994, pp. 123-132. Zbl0818.60066MR1309013
  10. 10. M. Demuth and J.A. van Casteren, A Hilbert-Schmidt property of resolvent differences of singularly perturbed generalized Schrödinger semigroups (Han-sur-Lesse 1991), Evolution equations, control theory, and biomathematics, Lecture Notes in Pure and Appl. Math. vol. 155, Marcel Dekker, New York, 1994, pp. 117-144. Zbl0796.47036MR1254893
  11. 11. M. Demuth and J.A. van Casteren, Stochastic spectral theory of Feller operators, book in preparation. Zbl0715.60093
  12. 12. S.N. Ethier and T.G. Kurtz, Markov processes, Characterization and Convergence, Wiley Series in Probability and Statistics, John Wiley and Sons, New York, 1985. Zbl0592.60049MR838085
  13. 13. M. Evans, N. Hastings and B. Peacock, Statistical distributions, A Wiley Interscience Publication, second edition, John Wiley and Sons, New York, 1993. Zbl0834.62001MR1228642
  14. 14. Farforovskaya Yu.B., On the difference f(B) - f(A) for unbounded self-adjoint operators in perturbation theory, Zap. Nauchn. sem. Leningrad, Otdel. Inst. Steklov (LOMI)107 (1982), 169-177, 232. Zbl0503.47023MR676163
  15. 15. Farforovskaya Yu.B. , Functions of operators and their commutators in perturbation theory, Functional analysis and operator theory, Banach Center Publications, vol. 30, Polish Academy of Sciences, Institute of Mathematics, Warsaw, 1994, Papers from the thirty-ninth Semester in Warsaw, March 2 - May 30, 1992, J. Zemánek (editor). Zbl0804.47016MR1285604
  16. 16. J. Gohberg and M. Krein, Theory and applications of Volterra operators in Hilbert space, Translations of Mathematical Monographs, vol. 24, Amer. Math. Soc., Providence R.I., 1970. Zbl0194.43804MR264447
  17. 17. V.V. Peller, Hankel operators in the perturbation theory of unbounded self-adjoint operators, Analysis and partial differential equations, Lecture Notes in Mathematics, vol. 122, Marcel Dekker, New York, 1990. Zbl0716.47015MR1044807
  18. 18. B. Simon, Functional integration and quantum physics, Academic Press, New York, 1979. Zbl0434.28013MR544188
  19. 19. B. Simon, Schrödinger semigroups, Bull. (New Series) Amer. Math. Soc.7 no. 3 (1982), 447-526. Zbl0524.35002MR670130
  20. 20. B. Simon, Erratum: Schrödinger semigroups, Bull. (New Series) Amer. Math. Soc.11 (1984), 426. MR752806
  21. 21. J.A. van Casteren, Generators of strongly continuous semigroups, Research Notes in Mathematics, vol. 115, Pitman, London, 1985. Zbl0576.47023
  22. 22. J.A. van Casteren, Cauchy semigroups and wave operators, Warwick Preprints 64/1995 (1995). 
  23. 11. M. Demuth and J.A. van Casteren, Stochastic spectral theory of Feller operators, book in preparation. Zbl0715.60093
  24. 23. D.R. Yafaev, Mathematical Scattering Theory: general theory, Translations of Mathematical Monographs, vol. 105, Amer. Math. Soc., 1992. Zbl0761.47001MR1180965
  25. 24. K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1980. Zbl0217.16001MR617913

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.