The Feynman integral and Feynman's operational calculus: a heuristic and mathematical introduction

Michel L. Lapidus

Annales mathématiques Blaise Pascal (1996)

  • Volume: 3, Issue: 1, page 89-102
  • ISSN: 1259-1734

How to cite

top

Lapidus, Michel L.. "The Feynman integral and Feynman's operational calculus: a heuristic and mathematical introduction." Annales mathématiques Blaise Pascal 3.1 (1996): 89-102. <http://eudml.org/doc/79156>.

@article{Lapidus1996,
author = {Lapidus, Michel L.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Feynman path integrals; disentangling algebras; Feynman's operational calculus for noncommuting operators},
language = {eng},
number = {1},
pages = {89-102},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {The Feynman integral and Feynman's operational calculus: a heuristic and mathematical introduction},
url = {http://eudml.org/doc/79156},
volume = {3},
year = {1996},
}

TY - JOUR
AU - Lapidus, Michel L.
TI - The Feynman integral and Feynman's operational calculus: a heuristic and mathematical introduction
JO - Annales mathématiques Blaise Pascal
PY - 1996
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 3
IS - 1
SP - 89
EP - 102
LA - eng
KW - Feynman path integrals; disentangling algebras; Feynman's operational calculus for noncommuting operators
UR - http://eudml.org/doc/79156
ER -

References

top
  1. [Ar] Araki, H.Expansionals in Banach algebras, Ann. Sci. Ecole Norm. Sup.6 (1973), 67-84. Zbl0257.46054MR435842
  2. [BaJoYo] Badrikian, A., Johnson, G.W.and Yoo Il, , The composition of operator-valued measurable functions is measurable, Proc. Amer. Math. Soc.123 (1995), 1815-1820. Zbl0823.46043MR1242072
  3. [Ca] Cameron, R.H., A family of integrals serving to connect the Wiener and Feynman integrals, J. Math and Physics39 (1960), 126-140. Zbl0096.06901MR127776
  4. [CaSt] Cameron, R. H.and Storvick, D.A., An operator-valued function space integral and a related integral equation, J. Math. Mech.18 (1968), 517-552. Zbl0186.20701MR236347
  5. [ChSa] Chadan, K. and Sabatier, P.C., Inverse Problems in Quantum Scattering Theory (1989), 2nd ed., Springer-Verlag, New York. Zbl0681.35088MR985100
  6. [dFJoLa1] DeFacio, B., Johnson, G.W.and Lapidus, M.L., Feynman's operational calculus as a generalized path integral, in Stochastic Processes: A Festschrift in Honour of Gopinath Kallianpur, S. Cambanis et al, Springer-Verlag, New York, 1993, pp. 51-60. Zbl0783.60063MR1427300
  7. [dFJoLa2] _____, Feynman's operational calculus and evolution equations. Preprint IHES/M/95/54, Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France, 1995 (80 pages). (To appear in Acta Applicandae Mathematicae.) MR1449438
  8. [Dy] Dyson, F.J., The radiation theories of Tomonaga, Schwinger and Feynman, Phys. Rev.75 (1949), 486-502. Zbl0032.23702MR28203
  9. [Fe1] Feynman, R.P., Space-time approach to non-relativistic quantum mechanics, Rev. Modern Phys.20 (1948), 367-387. MR26940
  10. [Fe2]_____, An operator calculus having applications in quantum electrodynamics, Phys. Rev.84 (1951), 108-128. Zbl0044.23304MR44379
  11. [Gi] Gill, T.L., Time-ordered operators I, Trans. Amer. Math. Soc.266 (1981), 161-181. Zbl0478.47027MR613790
  12. [Gi] Gill, T.L., Time-ordered operators II, Trans. Amer. Math. Soc.289 (1983), 617-634 . Zbl0544.47034MR709572
  13. [GiZa] Gill, T. L.and Zachary, W.W., Time-ordered operators and Feynman-Dyson algebras, J. Math. Phys.28 (1987), 1459-1470. Zbl0637.58043MR894833
  14. [GlJa] Glimm, J. and Jaffe, A., Quantum Physics: a Functional Integral Point of View, Springer-Verlag, New York, 1981. Zbl0461.46051MR628000
  15. [JeJo] Jefferies, B. and Johnson, G.W., Functional calculi for noncommuting operators, in prep. 
  16. [Jo] Johnson, G.W., The product of strong operator measurable functions is strong operator measurable, Proc. Amer. Math. Soc.117 (1993), 1097-1104. Zbl0804.46047MR1123654
  17. [JoLa1] Johnson, G.W.and Lapidus, M.L., Generalized Dyson series, generalized Feynman diagrams, the Feynman integral and Feynman's operational calculus, Memoirs Amer. Math. Soc.62 (1986), 1-78. Zbl0603.28014MR849943
  18. [JoLa2]_____, Feynman's operational caculus, generalized Dyson series and the Feynman integral, in "Operator Algebras and Mathematical Physics" P. E. T. Jorgensen and P. Muhly, Contemporary Mathematics, Vol. 62, Amer. Math. Soc., Providence, 1987, pp. 437-445. Zbl0621.28010
  19. [JoLa3] _____, Une multiplication non commutative des fonctionnelles de Wiener et le calcul opérationnel de Feynman, C. R. Acad. Sci. Paris Sér. I Math.304 (1987), 523-526. Zbl0609.46024MR892880
  20. [JoLa4]_____, Noncommutative operations on Wiener functionals and Feynman's operational calculus, J. Funct. Anal.81 (1988), 74-99. Zbl0663.47016MR967892
  21. [JoLa5]_____, The Feynman Integral and Feynman's Operational Calculus, Oxford Mathematical Monographs, Oxford Univ. Press, Oxford and New York, to appear. Zbl1027.46002MR1771173
  22. [JoSk] Johnson, G. W.and Skoug, D.L., The Cameron- Storvick function space integral: an L(Lp, Lp,) theory, Nagoya Math. J.60 (1976), 93-137. Zbl0314.28010MR407228
  23. [La1] Lapidus, M.L., Formule de Trotter et Calcul Cpérationnel de Feynman, Thèse de Doctorat d'Etat ès Sciences, Mathématiques. Université Pierre et Marie Curie (Paris VI), Paris, France, 1986. (Part I: Formules de Trotter et Intégrales de Feynman. Part III: Calcul Opérationnel de Feynman.) 
  24. [La2]_____, The differential equation for the Feynman-Kac Formula with a Lebesgue-Stieltjes measure, Lett. Math. Phys.11 (1986), 1-13. Zbl0635.35081MR824670
  25. [La3]_____, The Feynman-Kac formula with a Lebesgue-Stieltjes measure and Feynman's operational calculus, Stud. Appl. Math.76 (1987), 93-132. Zbl0626.28008MR965739
  26. [La4]_____, The Feynman-Kac formula with a Lebesgue-Stieltjes measure: an integral equation in the general case, Integral Equations Operator Theory12 (1989), 162-210. Zbl0697.46017MR986594
  27. [La5]_____, Strong product integration of measures and the Feynman-Kac formula with a Lebesgue-Stieltjes measure, inProc. Sherbrooke Conference on Functional Integration,Supp. Rend. Circ. Mat. Palermo, Ser. II17 (1987), pp. 271-312. Zbl0659.28010MR950421
  28. [La6] _____, Quantification, calcul opérationnel de Feynman axiomatique et intégrale fonctionnelle généralisée, C. R. Acad. Sci. Paris Sér. I308 (1989), 133-138. Zbl0664.47034MR983666
  29. [Ma] Maslov, V.P., Operational Methods, English transl. (Rev. from the 1973 Russian ed.), Moscow, Mir, 1976. Zbl0449.47002MR512495
  30. [McC] McCarthy, I.E., Introduction to Nuclear Theory, Wiley and Sons, New York, 1968. 
  31. [Ne] Nelson, E., Operants: a functional calculus for non-commuting operators, in Proc. Conf. in Honor of Marshall Stone, F. E. Browder, Springer-Verlag, New York, 1970, pp. 172-187. Zbl0239.47011MR412857
  32. [Re] Reyes J.T.Thesis, Univ. of Nebraska, Lincoln, in prep. 
  33. [Si] Simon, B., Functional Integration and Quantum Physics, Academic Press, New York, 1979. Zbl0434.28013MR544188
  34. [Ta] Tabakin, F., An effective interaction for nuclear Hartree-Fock calculations, Annals Phys. (N. Y.)30 (1964), 51-64. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.