A new family of functional series relations involving digamma functions

R.K. Raina; R.K. Ladda

Annales mathématiques Blaise Pascal (1996)

  • Volume: 3, Issue: 2, page 189-198
  • ISSN: 1259-1734

How to cite

top

Raina, R.K., and Ladda, R.K.. "A new family of functional series relations involving digamma functions." Annales mathématiques Blaise Pascal 3.2 (1996): 189-198. <http://eudml.org/doc/79164>.

@article{Raina1996,
author = {Raina, R.K., Ladda, R.K.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {digamma functions; series relations; H-function},
language = {eng},
number = {2},
pages = {189-198},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {A new family of functional series relations involving digamma functions},
url = {http://eudml.org/doc/79164},
volume = {3},
year = {1996},
}

TY - JOUR
AU - Raina, R.K.
AU - Ladda, R.K.
TI - A new family of functional series relations involving digamma functions
JO - Annales mathématiques Blaise Pascal
PY - 1996
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 3
IS - 2
SP - 189
EP - 198
LA - eng
KW - digamma functions; series relations; H-function
UR - http://eudml.org/doc/79164
ER -

References

top
  1. [1 ] B.N. Al-Saqabi, S.L. Kalla and H.M. Srivastava, A certain family of infinite series associated with digamma functions, J. Math. Anal. Appl. 159 (1991), 361-372. Zbl0726.33002MR1120938
  2. [2 ] B.L.J. Braaksma, Asymptotic expansions and analytical countinuations for a class of Barnes - integral, Compositio Math.15 (1964) , 239-341. Zbl0129.28604MR167651
  3. [3 ] C. Fox, The G and H functions as symmetrical Fourier Kernels, Trans. Amer. Math. Soc.98 (1961), 395-429. Zbl0096.30804MR131578
  4. [4 ] S.L. Kalla, Functional relations by means of Riemann - Liouville operator, Serdica13 (1987), 170-173. Zbl0634.33007MR903439
  5. [5 ] S.L. Kalla and B. Al-Saqabi, A functional relation involving Ψ-function, Rev. Tech. Fac. Ingr. Univ. Zulia8 (1985), 31-35. Zbl0589.39009MR824949
  6. [6 ] S.L. Kalla and B. Al-Saqabi, Summation of certain infinite series with digamma functions, C.R. Acad. Bulgare Sci.41 (11) (1988), 15-17. Zbl0662.33001MR985873
  7. [7 ] S.L. Kalla and B. Ross, The development of functional relations by means of fractional calculus, in Fractional Calculus, Pitman Ad. Publishing Program Boston (1985), 32-43. Zbl0616.26005MR860085
  8. [8 ] K. Nishimoto and R.K. Saxena, An application of Riemann - Liouville operator in the unification of certain functional relations, J. College Engrg. Nihhon Univ.32 (1991), 133-139. Zbl0896.33008MR1213814
  9. [9 ] K. Nishimoto and H.M. Srivastava, Certain class of infinite series summable by means of fractional calculus, J. College Engrg. Nihon Univ.30 (1989), 97-106. Zbl0651.33002MR985182
  10. [9 a ] N.-E. Nörlund, Leçons sur les séries d'interpolation, Paris, Gauthier-Villars, 1926. JFM52.0301.04
  11. [10 ] R.K. Raina, A series relation by means of certain fractional calculus operators, Indian J. Pure Appld. Math.21(2) (1990), 172-175. Zbl0693.33003MR1041940
  12. [11 ] B. Ross, Serendipidity in maths or how one is led to discover that ∑ ∞ n=1 ((1.3.5...(2n-1))/(n.2n.n!)) = ((1/2) + (3/16) + (15/144) + ...) = ln4, Amer. Math. Monthly90 (1983) 562-566. Zbl0539.26005
  13. [12 ] B. Ross, Methods of Summation, Descrates Press, Koriyama (1987). Zbl0726.40001MR1012739
  14. [13 ] H.M. Srivastava and K. Nishimoto, An elementary proof of a generalization of a certain functional relations derived by means of fractional calculus, J. Fractional calculus1 (1992), 69-74. Zbl0849.33009MR1165437
  15. [14 ] H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood Publication (1985). Zbl0552.33001MR834385
  16. [15 ] H.M. Srivastava , K.C. Gupta and S.P. Goyal, The H functions of One and Two Variables with Applications, South Asian Publishers, New Delhiand Madras (1982). Zbl0506.33007MR691138

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.