Asymptotic expansions and analytic continuations for a class of Barnes-integrals

B. L. J. Braaksma

Compositio Mathematica (1962-1964)

  • Volume: 15, page 239-341
  • ISSN: 0010-437X

How to cite

top

Braaksma, B. L. J.. "Asymptotic expansions and analytic continuations for a class of Barnes-integrals." Compositio Mathematica 15 (1962-1964): 239-341. <http://eudml.org/doc/88877>.

@article{Braaksma1962-1964,
author = {Braaksma, B. L. J.},
journal = {Compositio Mathematica},
keywords = {special functions},
language = {eng},
pages = {239-341},
publisher = {Kraus Reprint},
title = {Asymptotic expansions and analytic continuations for a class of Barnes-integrals},
url = {http://eudml.org/doc/88877},
volume = {15},
year = {1962-1964},
}

TY - JOUR
AU - Braaksma, B. L. J.
TI - Asymptotic expansions and analytic continuations for a class of Barnes-integrals
JO - Compositio Mathematica
PY - 1962-1964
PB - Kraus Reprint
VL - 15
SP - 239
EP - 341
LA - eng
KW - special functions
UR - http://eudml.org/doc/88877
ER -

References

top
  1. L.V. Ahlfors [1] Complex Analysis. New York, 1953. Zbl0052.07002
  2. E.W. Barnes [2] The asymptotic expansion of integral functions defined by Taylor's series. Phil. Trans. Roy. Soc. London (A), 206, 249—297 (1906). Zbl37.0427.01JFM37.0427.01
  3. [3] The asymptotic expansion of integral functions defined by generalized hypergeometric series. Proc. London Math. Soc. (2), 5, 59-116 (1907). Zbl38.0449.01JFM38.0449.01
  4. [4] A new development of the theory of the hypergeometric functions. Proc. London Math. Soc. (2), 6, 141—177 (1908). Zbl39.0506.01JFM39.0506.01
  5. S. Bochner [5] Some properties of modular relations. Ann. of Math.53, 332—363 (1951). Zbl0042.32101
  6. [5a] Theorems on analytic continuation which occur in the study of Riemann's functional equation. Journ. Indian Math. Soc., New Series 21, 127—147 (1957). Zbl0096.05203
  7. [6] On Riemann's functional equation with multiple gamma factors. Ann. of Math.67, 29—41 (1958). Zbl0082.29002
  8. J. Boersma [7] On a function, which is a special case of Meijer's G-function. Compos. Math.15, 34—63 (1962). Zbl0100.06505
  9. T.J. I' A. Bromwich [8] An introduction to the theory of infinite series. 2nd ed., London, 1949. Zbl0004.00705JFM39.0306.02
  10. K. Chandrasekharan and Raghavan Narasimhan [9] Functional equations with multiple gamma factors and the average order of arithmetical functions. Ann. of Math.76, 93—136 (1962). Zbl0211.37901
  11. E.T. Copson [10] An introduction to the theory of functions of a complex variable. Oxford, 1950. Zbl0012.16902
  12. J.G. Van Der Corput [11] On the coefficients in certain asymptotic factorial expansions I, II. Proc. Kon. Ned. Akad. Wet. Ser. A, 60, 337—351 (1957). Zbl0079.09903
  13. A.L. Dixon and W.L. Ferrar [12] A class of discontinuous integrals. Quart. Journ. Math. Oxford Ser.7, 81-96 (1936). Zbl0014.10804JFM62.0480.01
  14. G. Doetsch [13] Handbuch der Laplace-Transformation I, IIBasel, 1950, 1955. Zbl0040.05901
  15. A. Erdélyi [14] Asymptotic expansions. New York, 1956. Zbl0070.29002MR78494
  16. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi [15] Higher transcendental functions I. New York, 1953. Zbl0051.30303
  17. W.B. Ford [16] The asymptotic developments of functions defined by Maclaurin series. Ann Arbor, 1936. Zbl0016.12402JFM62.1203.03
  18. C. Fox [17] The asymptotic expansion of generalized hypergeometric functions. Proc. London Math. Soc. (2), 27, 389—400 (1928). Zbl54.0392.03JFM54.0392.03
  19. [18] The G and H functions as symmetrical Fourier kernels. Trans. Amer. Math. Soc.98, 395—429 (1961). Zbl0096.30804
  20. H.K. Hughes [19] On the asymptotic expansions of entire functions defined by Maclaurin series. Bull. Amer. Math. Soc.50, 425-430 (1944). Zbl0063.02937MR9987
  21. [20] The asymptotic developments of a class of entire functions. Bull. Amer. Math. Soc.51, 456—461 (1945). Zbl0063.02938
  22. T.M. Macrobert [21 ] Induction proofs of the relations between certain asymptotic expansions and corresponding generalized hypergeometric series. Proc. Roy. Soc. Edinburgh58, 1-13 (1938). Zbl0018.06101JFM64.0337.01
  23. C.S. Meijer [22] On the G-function I-VIII. Proc. Kon. Ned. Akad. Wet.49, 227—237, 344—356, 457—469, 632—641, 765—772, 936—943, 1063—1072, 1165—1175 (1946). Zbl0060.19901
  24. C.V. Newsom [23] On the character of certain entire functions in distant portions of the plane. Amer. J. Math.60, 561—572 (1938). Zbl0019.17106JFM64.0292.04
  25. [24] The asymptotic behavior of a class of entire functions. Amer. J. Math.65, 450—454 (1943). Zbl0063.05942
  26. F.W.J. Olver [25] Note on the asymptotic expansion of generalized hypergeometric functions. Journ. London Math. Soc.28, 462-464 (1953). Zbl0052.06903MR56749
  27. T.D. Riney [26] On the coefficients in asymptotic factorial expansions. Proc. Amer. Math. Soc.7, 245-249 (1956). Zbl0072.06804MR76903
  28. C.H. Rowe [27] A proof of the asymptotic series for log Γ(z) and log Γ(z+a). Ann. of Math. Second Ser.32, 10—16 (1931). Zbl0001.21301JFM57.0422.01
  29. G. Sansone and J.C.H. Gerretsen [28] Lectures on the theory of functions of a complex variable I. Groningen, 1960. Zbl0093.26803
  30. G.N. Watson [29] A class of integral functions defined by Taylor's series. Trans. Cambr. Phil. Soc.22, 15—37 (1913). JFM44.0476.03
  31. E.T. Whittaker and G.N. Watson [30] A course of modern analysis. 4th ed. Cambridge, 1958. Zbl45.0433.02JFM45.0433.02
  32. E.M. Wright [31] The asymptotic expansion of the generalized Bessel function. Proc. London Math. Soc. (2), 38, 257—270 (1935). Zbl0010.21103JFM60.0306.02
  33. [32] The asymptotic expansion of the generalized hypergeometric function. Journ. London Math. Soc.10, 286-293 (1935). Zbl0013.02104JFM61.0407.01
  34. [33] The asymptotic expansion of integral functions defined by Taylor series. Phil. Trans. Roy. Soc. London (A) 238, 423-451 (1940). Zbl0023.14002MR1296JFM66.0352.01
  35. [34] The asymptotic expansion of the generalized hypergeometric function. Proc. London Math. Soc. (2) 46, 389-408 (1940). Zbl0025.40402MR3876JFM66.1243.01
  36. [35] The generalized Bessel function of order greater than one. Quart. Journ. Math. Oxford Ser.11, 36-48 (1940). Zbl0023.14101MR3875JFM66.0322.01
  37. [36] The asymptotic expansion of integral functions defined by Taylor series (second paper). Phil. Trans. Roy. Soc. London (A) 239, 217—222 (1946). Zbl0061.14506
  38. [37] A recursion formula for the coefficients in an asymptotic expansion. Proc. Glasgow Math. Ass.4, 38—41 (1959-1960). Zbl0086.06101
  39. D. Wrinch [38] An asymptotic formula for the hypergeometric function 0Δ4 (z). Philos. Magazine (6) 41, 161—173 (1921). Zbl48.1244.01JFM48.1244.01
  40. [39] A generalized hypergeometric function with n parameters. Philos. Magazine (6) 41, 174—186 (1921). 
  41. [40] Some approximations to hypergeometric functions. Philos. Magazine (6) 45, 818-827 (1923). Zbl49.0252.01JFM49.0252.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.