Asymptotic expansions and analytic continuations for a class of Barnes-integrals
Compositio Mathematica (1962-1964)
- Volume: 15, page 239-341
- ISSN: 0010-437X
Access Full Article
topHow to cite
topBraaksma, B. L. J.. "Asymptotic expansions and analytic continuations for a class of Barnes-integrals." Compositio Mathematica 15 (1962-1964): 239-341. <http://eudml.org/doc/88877>.
@article{Braaksma1962-1964,
author = {Braaksma, B. L. J.},
journal = {Compositio Mathematica},
keywords = {special functions},
language = {eng},
pages = {239-341},
publisher = {Kraus Reprint},
title = {Asymptotic expansions and analytic continuations for a class of Barnes-integrals},
url = {http://eudml.org/doc/88877},
volume = {15},
year = {1962-1964},
}
TY - JOUR
AU - Braaksma, B. L. J.
TI - Asymptotic expansions and analytic continuations for a class of Barnes-integrals
JO - Compositio Mathematica
PY - 1962-1964
PB - Kraus Reprint
VL - 15
SP - 239
EP - 341
LA - eng
KW - special functions
UR - http://eudml.org/doc/88877
ER -
References
top- L.V. Ahlfors [1] Complex Analysis. New York, 1953. Zbl0052.07002
- E.W. Barnes [2] The asymptotic expansion of integral functions defined by Taylor's series. Phil. Trans. Roy. Soc. London (A), 206, 249—297 (1906). Zbl37.0427.01JFM37.0427.01
- [3] The asymptotic expansion of integral functions defined by generalized hypergeometric series. Proc. London Math. Soc. (2), 5, 59-116 (1907). Zbl38.0449.01JFM38.0449.01
- [4] A new development of the theory of the hypergeometric functions. Proc. London Math. Soc. (2), 6, 141—177 (1908). Zbl39.0506.01JFM39.0506.01
- S. Bochner [5] Some properties of modular relations. Ann. of Math.53, 332—363 (1951). Zbl0042.32101
- [5a] Theorems on analytic continuation which occur in the study of Riemann's functional equation. Journ. Indian Math. Soc., New Series 21, 127—147 (1957). Zbl0096.05203
- [6] On Riemann's functional equation with multiple gamma factors. Ann. of Math.67, 29—41 (1958). Zbl0082.29002
- J. Boersma [7] On a function, which is a special case of Meijer's G-function. Compos. Math.15, 34—63 (1962). Zbl0100.06505
- T.J. I' A. Bromwich [8] An introduction to the theory of infinite series. 2nd ed., London, 1949. Zbl0004.00705JFM39.0306.02
- K. Chandrasekharan and Raghavan Narasimhan [9] Functional equations with multiple gamma factors and the average order of arithmetical functions. Ann. of Math.76, 93—136 (1962). Zbl0211.37901
- E.T. Copson [10] An introduction to the theory of functions of a complex variable. Oxford, 1950. Zbl0012.16902
- J.G. Van Der Corput [11] On the coefficients in certain asymptotic factorial expansions I, II. Proc. Kon. Ned. Akad. Wet. Ser. A, 60, 337—351 (1957). Zbl0079.09903
- A.L. Dixon and W.L. Ferrar [12] A class of discontinuous integrals. Quart. Journ. Math. Oxford Ser.7, 81-96 (1936). Zbl0014.10804JFM62.0480.01
- G. Doetsch [13] Handbuch der Laplace-Transformation I, IIBasel, 1950, 1955. Zbl0040.05901
- A. Erdélyi [14] Asymptotic expansions. New York, 1956. Zbl0070.29002MR78494
- A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi [15] Higher transcendental functions I. New York, 1953. Zbl0051.30303
- W.B. Ford [16] The asymptotic developments of functions defined by Maclaurin series. Ann Arbor, 1936. Zbl0016.12402JFM62.1203.03
- C. Fox [17] The asymptotic expansion of generalized hypergeometric functions. Proc. London Math. Soc. (2), 27, 389—400 (1928). Zbl54.0392.03JFM54.0392.03
- [18] The G and H functions as symmetrical Fourier kernels. Trans. Amer. Math. Soc.98, 395—429 (1961). Zbl0096.30804
- H.K. Hughes [19] On the asymptotic expansions of entire functions defined by Maclaurin series. Bull. Amer. Math. Soc.50, 425-430 (1944). Zbl0063.02937MR9987
- [20] The asymptotic developments of a class of entire functions. Bull. Amer. Math. Soc.51, 456—461 (1945). Zbl0063.02938
- T.M. Macrobert [21 ] Induction proofs of the relations between certain asymptotic expansions and corresponding generalized hypergeometric series. Proc. Roy. Soc. Edinburgh58, 1-13 (1938). Zbl0018.06101JFM64.0337.01
- C.S. Meijer [22] On the G-function I-VIII. Proc. Kon. Ned. Akad. Wet.49, 227—237, 344—356, 457—469, 632—641, 765—772, 936—943, 1063—1072, 1165—1175 (1946). Zbl0060.19901
- C.V. Newsom [23] On the character of certain entire functions in distant portions of the plane. Amer. J. Math.60, 561—572 (1938). Zbl0019.17106JFM64.0292.04
- [24] The asymptotic behavior of a class of entire functions. Amer. J. Math.65, 450—454 (1943). Zbl0063.05942
- F.W.J. Olver [25] Note on the asymptotic expansion of generalized hypergeometric functions. Journ. London Math. Soc.28, 462-464 (1953). Zbl0052.06903MR56749
- T.D. Riney [26] On the coefficients in asymptotic factorial expansions. Proc. Amer. Math. Soc.7, 245-249 (1956). Zbl0072.06804MR76903
- C.H. Rowe [27] A proof of the asymptotic series for log Γ(z) and log Γ(z+a). Ann. of Math. Second Ser.32, 10—16 (1931). Zbl0001.21301JFM57.0422.01
- G. Sansone and J.C.H. Gerretsen [28] Lectures on the theory of functions of a complex variable I. Groningen, 1960. Zbl0093.26803
- G.N. Watson [29] A class of integral functions defined by Taylor's series. Trans. Cambr. Phil. Soc.22, 15—37 (1913). JFM44.0476.03
- E.T. Whittaker and G.N. Watson [30] A course of modern analysis. 4th ed. Cambridge, 1958. Zbl45.0433.02JFM45.0433.02
- E.M. Wright [31] The asymptotic expansion of the generalized Bessel function. Proc. London Math. Soc. (2), 38, 257—270 (1935). Zbl0010.21103JFM60.0306.02
- [32] The asymptotic expansion of the generalized hypergeometric function. Journ. London Math. Soc.10, 286-293 (1935). Zbl0013.02104JFM61.0407.01
- [33] The asymptotic expansion of integral functions defined by Taylor series. Phil. Trans. Roy. Soc. London (A) 238, 423-451 (1940). Zbl0023.14002MR1296JFM66.0352.01
- [34] The asymptotic expansion of the generalized hypergeometric function. Proc. London Math. Soc. (2) 46, 389-408 (1940). Zbl0025.40402MR3876JFM66.1243.01
- [35] The generalized Bessel function of order greater than one. Quart. Journ. Math. Oxford Ser.11, 36-48 (1940). Zbl0023.14101MR3875JFM66.0322.01
- [36] The asymptotic expansion of integral functions defined by Taylor series (second paper). Phil. Trans. Roy. Soc. London (A) 239, 217—222 (1946). Zbl0061.14506
- [37] A recursion formula for the coefficients in an asymptotic expansion. Proc. Glasgow Math. Ass.4, 38—41 (1959-1960). Zbl0086.06101
- D. Wrinch [38] An asymptotic formula for the hypergeometric function 0Δ4 (z). Philos. Magazine (6) 41, 161—173 (1921). Zbl48.1244.01JFM48.1244.01
- [39] A generalized hypergeometric function with n parameters. Philos. Magazine (6) 41, 174—186 (1921).
- [40] Some approximations to hypergeometric functions. Philos. Magazine (6) 45, 818-827 (1923). Zbl49.0252.01JFM49.0252.01
Citations in EuDML Documents
top- Sadhana Mishra, Integrals involving Hermite polynomials, generalized hypergeometric series and Fox's H-function, and Fourier-Hermite series for products of generalized hypergeometric functions
- R.K. Raina, R.K. Ladda, A new family of functional series relations involving digamma functions
- R. K. Raina, Mamta Bolia, Characterization properties for starlike and convex functions involving a class of fractional integral operators
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.