Composition of pseudo almost periodic functions and Cauchy problems with operator of non dense domain

B. Amir; L. Maniar

Annales mathématiques Blaise Pascal (1999)

  • Volume: 6, Issue: 1, page 1-11
  • ISSN: 1259-1734

How to cite

top

Amir, B., and Maniar, L.. "Composition of pseudo almost periodic functions and Cauchy problems with operator of non dense domain." Annales mathématiques Blaise Pascal 6.1 (1999): 1-11. <http://eudml.org/doc/79204>.

@article{Amir1999,
author = {Amir, B., Maniar, L.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {differential equations in abstract spaces; pseudo almost-periodic solutions; unbounded Hille-Yosida linear operator},
language = {eng},
number = {1},
pages = {1-11},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Composition of pseudo almost periodic functions and Cauchy problems with operator of non dense domain},
url = {http://eudml.org/doc/79204},
volume = {6},
year = {1999},
}

TY - JOUR
AU - Amir, B.
AU - Maniar, L.
TI - Composition of pseudo almost periodic functions and Cauchy problems with operator of non dense domain
JO - Annales mathématiques Blaise Pascal
PY - 1999
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 6
IS - 1
SP - 1
EP - 11
LA - eng
KW - differential equations in abstract spaces; pseudo almost-periodic solutions; unbounded Hille-Yosida linear operator
UR - http://eudml.org/doc/79204
ER -

References

top
  1. [1] Ait Dads, E. ; Ezzinbi, K. ; Arino, O. : Pseudo almost periodic solutions for some differential equations in a Banach space, Nonlinear Analysis, Theory, Methods & Applications, Vol. 28, No 7, (1997), pp. 1141-1155. Zbl0874.34041MR1422806
  2. [2] Amann, H. : Linear and Quasilinear Parabolic Problems. Birkhäuser, Berlin1995. Zbl0819.35001MR1345385
  3. [3] Amir, B. ; Maniar, L.: Application de la théorie d'extrapolation pour la résolution des équations différentielles à retard homogènes. Extracta Mathematicae Vol13, Núm.1, 95-105 (1998). Zbl1004.47025MR1652521
  4. [4] Da Prato, G. ; Grisvard, E.: On extrapolation spaces. Rend. Accad. Naz. Lincei.72 (1982), pp. 330-332. Zbl0527.46055MR726298
  5. [5] Da Prato, G. ; Sinestrari, E.: Differential operators with non dense domain, Annali Scuola Normale Superiore Pisa14 (1989), pp. 285-344. Zbl0652.34069MR939631
  6. [6] Fink, A.M.: Almost Periodic Differential Equations, Lectures Notes in Mathematics377, Springer-Verlag, 1974. Zbl0325.34039MR460799
  7. [7] Hille, E. ; Phillips, R.S.: Functional Analysis and Semigroups. Amer. Math. Soc.Providence1975. Zbl0392.46001
  8. [8] Maniar, L. ; Rhandi, A.: Inhomogeneous retarded differential equation in infinite dimensional space via extrapolation spaces. To appear in Rendiconti Del Circolo Mathematico Di Palerm, Vol.17 (1998). Zbl0916.34065MR1633503
  9. [9] Nagel, R.: One Parameter Semigroups of Positive Operators. Lecture Notes in Mathematics1184, Springer-Verlag1986. Zbl0585.47030MR839450
  10. [10] Nagel, R.: Sobolev spaces and semigroups,Semesterberichte Funktionalanalysis, Band 4 (1983), pp. 1-20. 
  11. [11] Nagel, R. ; Sinestrari, E.: Inhomogeneous Volterra integrodifferential equations for Hille-Yosida operators. Marcel Dekker, Lecture Notes Pure Appl. Math.150 (1994). Zbl0790.45011MR1241671
  12. [12] van Neerven, J.:The Adjoint of a Semigroup of Linear Operators. Lecture Notes Math.1529, Springer-Verlag1992. Zbl0780.47026MR1222650
  13. [13] Nickel, G. ; Rhandi, A.: On the essential spectral radius of semigroups generated by perturbations of Hille-Yosida operators. To appear in Diff. Integ. Equat. 
  14. [14] Zhang, C.: Pseudo Almost Periodic Functions and Their Applications. Thesis, the university of Ontario, 1992. 
  15. [15] Zhang, C.: Pseudo almost periodic solutions of some differential equations. J.M.A.A.181, (1994), pp. 62-76. Zbl0796.34029MR1257954

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.