On the solution set of second-order delay differential inclusions in Banach spaces

A. Sghir

Annales mathématiques Blaise Pascal (2000)

  • Volume: 7, Issue: 1, page 65-79
  • ISSN: 1259-1734

How to cite

top

Sghir, A.. "On the solution set of second-order delay differential inclusions in Banach spaces." Annales mathématiques Blaise Pascal 7.1 (2000): 65-79. <http://eudml.org/doc/79217>.

@article{Sghir2000,
author = {Sghir, A.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {second-order delay differential inclusion; solution sets},
language = {eng},
number = {1},
pages = {65-79},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {On the solution set of second-order delay differential inclusions in Banach spaces},
url = {http://eudml.org/doc/79217},
volume = {7},
year = {2000},
}

TY - JOUR
AU - Sghir, A.
TI - On the solution set of second-order delay differential inclusions in Banach spaces
JO - Annales mathématiques Blaise Pascal
PY - 2000
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 7
IS - 1
SP - 65
EP - 79
LA - eng
KW - second-order delay differential inclusion; solution sets
UR - http://eudml.org/doc/79217
ER -

References

top
  1. [1] Aubin J.P.and Cellina A.., Differential inclusions, Springer-Verlag, Berlin, 1984. Zbl0538.34007MR755330
  2. [2] Brezis H., Analyse fonctionnelle. Théorie et Applications Masson (1983). Zbl0511.46001MR697382
  3. [3] Castaing C. and Valadier M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin, (1977). Zbl0346.46038MR467310
  4. [4] Deimling K.., Nonlinear analysis. Springer-Verlag, Berlin (1985). Zbl0559.47040MR787404
  5. [5] Diestel J.., Remarks on weak compactness in L1(μ; E), Glasgow Math. J.18, pp. 87-91 (1977). Zbl0342.46020
  6. [6] Ekeland I. and Temam R.., Convex analysis and variational problems. North-Holland, Amsterdam (1976). Zbl0322.90046MR463994
  7. [7] Fattorini H.., Second order linear differential equations in Banach spaces. Math. Holland (1985). Zbl0564.34063MR797071
  8. [8] Frankowska H.., A priori estimates for operational differential inclusions. J. Diff. Equations84 (1990), pp. 100-128. Zbl0705.34016MR1042661
  9. [9] Hale J.., Functional differential equations. Springer-Verlag (1977). Zbl0352.34001MR390425
  10. [10] Nguyen D.H.and Nguyen K.S.., Existence and relaxation of solutions of functional differential inclusions. Vietnam Journal of Math. Vol. 23, N2 (1995). Zbl0937.34064MR2009709
  11. [11] Robert H. Martin Jr., Nonlinear operators and differential equations in Banach spaces. John-Wiley.New-York (1976). Zbl0333.47023MR492671
  12. [12] Yoshida K., Functional Analysis. Springer (1965). 
  13. [13] Zhu Qi Ji, On the solution set of differential inclusions in Banach space, J. Diff. Equations93 (1991) pp. 213-237. Zbl0735.34017MR1125218

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.