On the solution set of second-order delay differential inclusions in Banach spaces
Annales mathématiques Blaise Pascal (2000)
- Volume: 7, Issue: 1, page 65-79
- ISSN: 1259-1734
Access Full Article
topHow to cite
topSghir, A.. "On the solution set of second-order delay differential inclusions in Banach spaces." Annales mathématiques Blaise Pascal 7.1 (2000): 65-79. <http://eudml.org/doc/79217>.
@article{Sghir2000,
author = {Sghir, A.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {second-order delay differential inclusion; solution sets},
language = {eng},
number = {1},
pages = {65-79},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {On the solution set of second-order delay differential inclusions in Banach spaces},
url = {http://eudml.org/doc/79217},
volume = {7},
year = {2000},
}
TY - JOUR
AU - Sghir, A.
TI - On the solution set of second-order delay differential inclusions in Banach spaces
JO - Annales mathématiques Blaise Pascal
PY - 2000
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 7
IS - 1
SP - 65
EP - 79
LA - eng
KW - second-order delay differential inclusion; solution sets
UR - http://eudml.org/doc/79217
ER -
References
top- [1] Aubin J.P.and Cellina A.., Differential inclusions, Springer-Verlag, Berlin, 1984. Zbl0538.34007MR755330
- [2] Brezis H., Analyse fonctionnelle. Théorie et Applications Masson (1983). Zbl0511.46001MR697382
- [3] Castaing C. and Valadier M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin, (1977). Zbl0346.46038MR467310
- [4] Deimling K.., Nonlinear analysis. Springer-Verlag, Berlin (1985). Zbl0559.47040MR787404
- [5] Diestel J.., Remarks on weak compactness in L1(μ; E), Glasgow Math. J.18, pp. 87-91 (1977). Zbl0342.46020
- [6] Ekeland I. and Temam R.., Convex analysis and variational problems. North-Holland, Amsterdam (1976). Zbl0322.90046MR463994
- [7] Fattorini H.., Second order linear differential equations in Banach spaces. Math. Holland (1985). Zbl0564.34063MR797071
- [8] Frankowska H.., A priori estimates for operational differential inclusions. J. Diff. Equations84 (1990), pp. 100-128. Zbl0705.34016MR1042661
- [9] Hale J.., Functional differential equations. Springer-Verlag (1977). Zbl0352.34001MR390425
- [10] Nguyen D.H.and Nguyen K.S.., Existence and relaxation of solutions of functional differential inclusions. Vietnam Journal of Math. Vol. 23, N2 (1995). Zbl0937.34064MR2009709
- [11] Robert H. Martin Jr., Nonlinear operators and differential equations in Banach spaces. John-Wiley.New-York (1976). Zbl0333.47023MR492671
- [12] Yoshida K., Functional Analysis. Springer (1965).
- [13] Zhu Qi Ji, On the solution set of differential inclusions in Banach space, J. Diff. Equations93 (1991) pp. 213-237. Zbl0735.34017MR1125218
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.