The period function near a polycycle with two semi-hyperbolic vertices
Angélica Mansilla; Mariana Saavedra
Annales mathématiques Blaise Pascal (2001)
- Volume: 8, Issue: 1, page 93-104
- ISSN: 1259-1734
Access Full Article
topHow to cite
topMansilla, Angélica, and Saavedra, Mariana. "The period function near a polycycle with two semi-hyperbolic vertices." Annales mathématiques Blaise Pascal 8.1 (2001): 93-104. <http://eudml.org/doc/79230>.
@article{Mansilla2001,
author = {Mansilla, Angélica, Saavedra, Mariana},
journal = {Annales mathématiques Blaise Pascal},
keywords = {return time function; polycycle; annulus of periodic orbits; semi-hyperbolic critical point},
language = {eng},
number = {1},
pages = {93-104},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {The period function near a polycycle with two semi-hyperbolic vertices},
url = {http://eudml.org/doc/79230},
volume = {8},
year = {2001},
}
TY - JOUR
AU - Mansilla, Angélica
AU - Saavedra, Mariana
TI - The period function near a polycycle with two semi-hyperbolic vertices
JO - Annales mathématiques Blaise Pascal
PY - 2001
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 8
IS - 1
SP - 93
EP - 104
LA - eng
KW - return time function; polycycle; annulus of periodic orbits; semi-hyperbolic critical point
UR - http://eudml.org/doc/79230
ER -
References
top- [A] V.I. Arnold. "Ordinary differential equations", R. A. Silverman, translator, MIT Press, 1978. Zbl0296.34001MR508209
- [C-D] C. Chicone F. Dumortier. "Finiteness for critical periods of planar analytic vector fields", Nonlinear Anal. Theory, Methods Appl.20, n° 4, (1993), 315-335. Zbl0773.34032MR1206421
- [M] R. Moussu . "Développement asymptotique de l'application retour d'un polycycle". Lectures Notes in Math., n° 1331 (1989). Zbl0659.58009MR961097
- [P] L.M. Perko. "On the accumulation of limit cycles", Proc. Amer. Math. Soc., 99 (1987) 515-526. Zbl0626.34022MR875391
- [S] M. Saavedra. "Développement asymptotique de la fonction période". Thesis Doctor's degree of the Bourgogne's University, 1995. MR1298283
- [Sa] M. Saavedra. "Développement asymptotique de la fonction période". C. R. Acad. Sci. Paris, t. 319, Série I, p. 563-566 (1994). Zbl0814.34038MR1298283
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.