A mathematical model for resin transfer molding

Rajae Aboulaich; Soumaya Boujena; Jérôme Pousin

Annales mathématiques Blaise Pascal (2001)

  • Volume: 8, Issue: 2, page 115-136
  • ISSN: 1259-1734

How to cite

top

Aboulaich, Rajae, Boujena, Soumaya, and Pousin, Jérôme. "A mathematical model for resin transfer molding." Annales mathématiques Blaise Pascal 8.2 (2001): 115-136. <http://eudml.org/doc/79232>.

@article{Aboulaich2001,
author = {Aboulaich, Rajae, Boujena, Soumaya, Pousin, Jérôme},
journal = {Annales mathématiques Blaise Pascal},
language = {eng},
number = {2},
pages = {115-136},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {A mathematical model for resin transfer molding},
url = {http://eudml.org/doc/79232},
volume = {8},
year = {2001},
}

TY - JOUR
AU - Aboulaich, Rajae
AU - Boujena, Soumaya
AU - Pousin, Jérôme
TI - A mathematical model for resin transfer molding
JO - Annales mathématiques Blaise Pascal
PY - 2001
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 8
IS - 2
SP - 115
EP - 136
LA - eng
UR - http://eudml.org/doc/79232
ER -

References

top
  1. [1] J.F. Agassant, Y. Demay, and A. Fortin. Prediction of stationary interfaces in coextrusion flows. Polymer engineering and science, 34:121-134, 1994. N 14. 
  2. [2] H. Brézis. Analyse fonctionnelle. Masson, Paris, 1983. Zbl0511.46001MR697382
  3. [3] Bardos C.Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation. application à l'équation de transport. Ann. Sci. École Normale Supérieure, 4eme série, t. 3:185-233, 1970. Zbl0202.36903MR274925
  4. [4] E.A. Coddington and L. Norman. Ordinary differential equations. Mcgran-hill book compagny, New-York; Toronto ; London, 1955. Zbl0064.33002MR69338
  5. [5] M. Crouzeix and A. Mignot. Approximation des équations différentielles ordinaires. Masson, Paris, 1992. 
  6. [6] O. Diallo. Modélisation et simulation numérique de résines réactives dans un milieu poreux. PhD Thesis, Claude Bernard UniversityLyon 1, 2000. 
  7. [7] O. Diallo, J. Pousin, and T. Sassi. A posteriori error estimates for the transport equation applied to resin transfert molding problems. In R. OwensM. Deville, 16th IMACS world congres Proceeding. Pitman Reasearch Notes in Mathematics series 345Longman, 2000. MR1733418
  8. [8] M.R. Kamal and S. Sourour. Kinetics and thermal characterization of thermoset cure. Polymer Engineering and science, 13:59-64, 1973. 
  9. [9] E. Maitre and P. Witomski. Transport equation with boundary conditions for free surface localization. Numer. Math., 84:275-303, 1999. No. 2. Zbl0957.76090MR1730014
  10. [10] A. Nouri and F. Poupaud. An existence theorem for the multifluid stokes problem. Quart. Appl. Math., 55:421-435, 1997. N 3. Zbl0882.35091MR1466141

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.