Page 1 Next

Displaying 1 – 20 of 36

Showing per page

3-dimensional physically consistent diffusion in anisotropic media with memory

Michele Caputo (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Some data on the flow of fluids exhibit properties which may not be interpreted with the classic theory of propagation of pressure and of fluids [21] based on the classic D’Arcy’s law which states that the flux is proportional to the pressure gradient. In order to obtain a better representation of the flow and of the pressure of fluids the law of D’Arcy is here modified introducing a memory formalisms operating on the flow as well as on the pressure gradient which implies a filtering of the pressure...

A model of dense fluids

R. Streater (1998)

Banach Center Publications

We obtain coupled reaction-diffusion equations for the density and temperature of a dense fluid, starting from a discrete model in which at most one particle can be present at each site. The model is constructed by the methods of statistical dynamics. We verify that the theory obeys the first and second laws of thermodynamics. Some remarks on measurement theory for the position of a particle are offered.

Finite element approximations of a glaciology problem

Sum S. Chow, Graham F. Carey, Michael L. Anderson (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we study a model problem describing the movement of a glacier under Glen’s flow law and investigated by Colinge and Rappaz [Colinge and Rappaz, ESAIM: M2AN 33 (1999) 395–406]. We establish error estimates for finite element approximation using the results of Chow [Chow, SIAM J. Numer. Analysis 29 (1992) 769–780] and Liu and Barrett [Liu and Barrett, SIAM J. Numer. Analysis 33 (1996) 98–106] and give an analysis of the convergence of the successive approximations used in [Colinge and...

Finite element approximations of a glaciology problem

Sum S. Chow, Graham F. Carey, Michael L. Anderson (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we study a model problem describing the movement of a glacier under Glen's flow law and investigated by Colinge and Rappaz [Colinge and Rappaz, ESAIM: M2AN33 (1999) 395–406]. We establish error estimates for finite element approximation using the results of Chow [Chow, SIAM J. Numer. Analysis29 (1992) 769–780] and Liu and Barrett [Liu and Barrett, SIAM J. Numer. Analysis33 (1996) 98–106] and give an analysis of the convergence of the successive approximations used in [Colinge and...

Geometrodynamics of some non-relativistic incompressible fluids.

Agostino Pràstaro (1979)

Stochastica

In some previous papers [1, 2] we proposed a geometric formulation of continuum mechanics, where a continuous body is seen as a suitable differentiable fiber bundle C on the Galilean space-time M, beside a differential equation of order k, Ek(C), on C and the assignement of a frame Psi on M. This approach allowed us to treat continuum mechanics as a unitary field theory and to consider constitutive and dynamical properties in a more natural way. Further, the particular intrinsic geometrical framework...

On fully developed flows of fluids with a pressure dependent viscosity in a pipe

Macherla Vasudevaiah, Kumbakonam R. Rajagopal (2005)

Applications of Mathematics

Stokes recognized that the viscosity of a fluid can depend on the normal stress and that in certain flows such as flows in a pipe or in channels under normal conditions, this dependence can be neglected. However, there are many other flows, which have technological significance, where the dependence of the viscosity on the pressure cannot be neglected. Numerous experimental studies have unequivocally shown that the viscosity depends on the pressure, and that this dependence can be quite strong,...

Currently displaying 1 – 20 of 36

Page 1 Next