Weak solutions for some reaction-diffusion systems with balance law and critical growth with respect to the gradient
Annales mathématiques Blaise Pascal (2001)
- Volume: 8, Issue: 2, page 1-19
- ISSN: 1259-1734
Access Full Article
topHow to cite
topAlaa, N., and Mounir, I.. "Weak solutions for some reaction-diffusion systems with balance law and critical growth with respect to the gradient." Annales mathématiques Blaise Pascal 8.2 (2001): 1-19. <http://eudml.org/doc/79233>.
@article{Alaa2001,
author = {Alaa, N., Mounir, I.},
journal = {Annales mathématiques Blaise Pascal},
language = {eng},
number = {2},
pages = {1-19},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Weak solutions for some reaction-diffusion systems with balance law and critical growth with respect to the gradient},
url = {http://eudml.org/doc/79233},
volume = {8},
year = {2001},
}
TY - JOUR
AU - Alaa, N.
AU - Mounir, I.
TI - Weak solutions for some reaction-diffusion systems with balance law and critical growth with respect to the gradient
JO - Annales mathématiques Blaise Pascal
PY - 2001
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 8
IS - 2
SP - 1
EP - 19
LA - eng
UR - http://eudml.org/doc/79233
ER -
References
top- [1] N. Alaa, solutions faibles d'équations paraboliques quasi-linéaires avec données initiales mesures. Ann. Math. Blaise Pascal, 3 N°2, pp. 1 - 15(1996). Zbl0882.35027MR1435312
- [2] N. Alaa, I. Mounir, Global existence for reaction-diffusion systems with mass control and critical growth with respect to the gradient. Journal of Mathematical Analysis and Applications253, pp.532 - 557, (2001). Zbl0963.35078MR1808152
- [3] N. Alaa, M. Pierre. Weak solutions for some quasilinear elliptic equations with data measures. SIAM J. Math. Anal, vol 24, n°1, p. 23 - 35, (1993). Zbl0809.35021MR1199524
- [4] A. Bensoussan, L. Boccardo and F. Murat, On a non linear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. Henri Poincaré. vol 5, n°4,p. 347 - 364(1988). Zbl0696.35042MR963104
- [5] L. Boccardo, F. Murat, J.P. Puel, Existence results for some quasilinear parabolic equations, Nonlinear Anlysis. Theory. Methods & Applications, 13, N° 4, pp. 373 - 392(1989). Zbl0705.35066MR987375
- [6] L. Boccardo, T. Gallouet. Strongly nonlinear elliptic equations having natural growth terms in L1 data. Nonlinear Anal. T.M.A., vol 19, pp. 573 - 579, (1992). Zbl0795.35031MR1183664
- [7] L. Boccardo, F. Murat, J.P. Puel. Existence de solutions faibles des équations elliptiques quasi-lineaires à croissance quadratique. Nonlinear P.D.E. and their applications, Collège de France Seminar, Vol IV, ed. by H. Brezis& J. L. Lions. Research Notes in Mathematics84, Pitman, London, pp. 19 - 73, (1983). Zbl0588.35041MR716511
- [8] H. Brezis, W. Strauss, Semi-linear elliptic equation in L1, J. Math. Soc. Japan, Vol. 25, pp; 565 - 590(1973). Zbl0278.35041MR336050
- [9] W.E. Fitzgibbon, J. Morgan, R. Sanders. Global existence and boundedness for class of inhomogeneous semilinear parabolic systems, Nonlinear Analysis, Theory Methods and Applications, Vol. 19,N°9,pp.885-899(1992). Zbl0801.35041MR1190873
- [10] S.L. Hollis, R.H. Martin, M. Pierre, Global Existence and Boundeness in Reaction-Diffusion Systems, SIAM. J. Math. Anal.18, pp. 744 - 761, (1987). Zbl0655.35045MR883566
- [11] J.L. Lions, quelques méthodes de résolutions des problèmes aux limites non linéaires, Dunod-Gauthier Villars(1969). Zbl0189.40603MR259693
- [12] F. Maach. Existence pour des systèmes de réaction-diffusion quasi-lineaires avec loi de balance. Thèse de Doctorat de l'Université Henri Poincaré, Nancy I,(1994).
- [13] R.H. Martin, M. Pierre, Nonlinear reaction-diffusion systems, in "Nonlinear Equations in the Applied Sciences", ed W. F. Ames, C. Rogers and Kapell, Academic Press (1991), Notes and reports in Mathematics in Science and Engineering.
- [14] M. Pierre, An L1 method to prove global existence in some reaction-diffusion systems, in Contributions to nonlinear partial differential equations,J. I. Lionset P. L. LionsPitman Res. Notes in Math. Series, pp. 220 - 231(1987). Zbl0651.35041MR907735
- [15] A. Porretta. Existence for elliptic equations in L1 having lower order terms with natural growth.Portugaliae Mathematica Vol. 57 Fasc.2 - 2000. Zbl0963.35068MR1759814
- [16] F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lectures Notes in Math. 1072, Springer-Verlag (1984). Zbl0546.35003MR755878
- [17] J. Smoller. Shock waves and reaction-diffusion equations, in Comprehensive Studies in Mathematics, Vol. 258. Springer, New York (1984). Zbl0508.35002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.