Weak solutions for some reaction-diffusion systems with balance law and critical growth with respect to the gradient

N. Alaa; I. Mounir

Annales mathématiques Blaise Pascal (2001)

  • Volume: 8, Issue: 2, page 1-19
  • ISSN: 1259-1734

How to cite

top

Alaa, N., and Mounir, I.. "Weak solutions for some reaction-diffusion systems with balance law and critical growth with respect to the gradient." Annales mathématiques Blaise Pascal 8.2 (2001): 1-19. <http://eudml.org/doc/79233>.

@article{Alaa2001,
author = {Alaa, N., Mounir, I.},
journal = {Annales mathématiques Blaise Pascal},
language = {eng},
number = {2},
pages = {1-19},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Weak solutions for some reaction-diffusion systems with balance law and critical growth with respect to the gradient},
url = {http://eudml.org/doc/79233},
volume = {8},
year = {2001},
}

TY - JOUR
AU - Alaa, N.
AU - Mounir, I.
TI - Weak solutions for some reaction-diffusion systems with balance law and critical growth with respect to the gradient
JO - Annales mathématiques Blaise Pascal
PY - 2001
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 8
IS - 2
SP - 1
EP - 19
LA - eng
UR - http://eudml.org/doc/79233
ER -

References

top
  1. [1] N. Alaa, solutions faibles d'équations paraboliques quasi-linéaires avec données initiales mesures. Ann. Math. Blaise Pascal, 3 N°2, pp. 1 - 15(1996). Zbl0882.35027MR1435312
  2. [2] N. Alaa, I. Mounir, Global existence for reaction-diffusion systems with mass control and critical growth with respect to the gradient. Journal of Mathematical Analysis and Applications253, pp.532 - 557, (2001). Zbl0963.35078MR1808152
  3. [3] N. Alaa, M. Pierre. Weak solutions for some quasilinear elliptic equations with data measures. SIAM J. Math. Anal, vol 24, n°1, p. 23 - 35, (1993). Zbl0809.35021MR1199524
  4. [4] A. Bensoussan, L. Boccardo and F. Murat, On a non linear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. Henri Poincaré. vol 5, n°4,p. 347 - 364(1988). Zbl0696.35042MR963104
  5. [5] L. Boccardo, F. Murat, J.P. Puel, Existence results for some quasilinear parabolic equations, Nonlinear Anlysis. Theory. Methods & Applications, 13, N° 4, pp. 373 - 392(1989). Zbl0705.35066MR987375
  6. [6] L. Boccardo, T. Gallouet. Strongly nonlinear elliptic equations having natural growth terms in L1 data. Nonlinear Anal. T.M.A., vol 19, pp. 573 - 579, (1992). Zbl0795.35031MR1183664
  7. [7] L. Boccardo, F. Murat, J.P. Puel. Existence de solutions faibles des équations elliptiques quasi-lineaires à croissance quadratique. Nonlinear P.D.E. and their applications, Collège de France Seminar, Vol IV, ed. by H. Brezis& J. L. Lions. Research Notes in Mathematics84, Pitman, London, pp. 19 - 73, (1983). Zbl0588.35041MR716511
  8. [8] H. Brezis, W. Strauss, Semi-linear elliptic equation in L1, J. Math. Soc. Japan, Vol. 25, pp; 565 - 590(1973). Zbl0278.35041MR336050
  9. [9] W.E. Fitzgibbon, J. Morgan, R. Sanders. Global existence and boundedness for class of inhomogeneous semilinear parabolic systems, Nonlinear Analysis, Theory Methods and Applications, Vol. 19,N°9,pp.885-899(1992). Zbl0801.35041MR1190873
  10. [10] S.L. Hollis, R.H. Martin, M. Pierre, Global Existence and Boundeness in Reaction-Diffusion Systems, SIAM. J. Math. Anal.18, pp. 744 - 761, (1987). Zbl0655.35045MR883566
  11. [11] J.L. Lions, quelques méthodes de résolutions des problèmes aux limites non linéaires, Dunod-Gauthier Villars(1969). Zbl0189.40603MR259693
  12. [12] F. Maach. Existence pour des systèmes de réaction-diffusion quasi-lineaires avec loi de balance. Thèse de Doctorat de l'Université Henri Poincaré, Nancy I,(1994). 
  13. [13] R.H. Martin, M. Pierre, Nonlinear reaction-diffusion systems, in "Nonlinear Equations in the Applied Sciences", ed W. F. Ames, C. Rogers and Kapell, Academic Press (1991), Notes and reports in Mathematics in Science and Engineering. 
  14. [14] M. Pierre, An L1 method to prove global existence in some reaction-diffusion systems, in Contributions to nonlinear partial differential equations,J. I. Lionset P. L. LionsPitman Res. Notes in Math. Series, pp. 220 - 231(1987). Zbl0651.35041MR907735
  15. [15] A. Porretta. Existence for elliptic equations in L1 having lower order terms with natural growth.Portugaliae Mathematica Vol. 57 Fasc.2 - 2000. Zbl0963.35068MR1759814
  16. [16] F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lectures Notes in Math. 1072, Springer-Verlag (1984). Zbl0546.35003MR755878
  17. [17] J. Smoller. Shock waves and reaction-diffusion equations, in Comprehensive Studies in Mathematics, Vol. 258. Springer, New York (1984). Zbl0508.35002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.