Global-Local subadditive ergodic theorems and application to homogenization in elasticity
Christian Licht; Gérard Michaille
Annales mathématiques Blaise Pascal (2002)
- Volume: 9, Issue: 1, page 21-62
- ISSN: 1259-1734
Access Full Article
topHow to cite
topLicht, Christian, and Michaille, Gérard. "Global-Local subadditive ergodic theorems and application to homogenization in elasticity." Annales mathématiques Blaise Pascal 9.1 (2002): 21-62. <http://eudml.org/doc/79242>.
@article{Licht2002,
author = {Licht, Christian, Michaille, Gérard},
journal = {Annales mathématiques Blaise Pascal},
keywords = {ergodic theory; homogenization; subadditive processes; nonlinear elasticity},
language = {eng},
number = {1},
pages = {21-62},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Global-Local subadditive ergodic theorems and application to homogenization in elasticity},
url = {http://eudml.org/doc/79242},
volume = {9},
year = {2002},
}
TY - JOUR
AU - Licht, Christian
AU - Michaille, Gérard
TI - Global-Local subadditive ergodic theorems and application to homogenization in elasticity
JO - Annales mathématiques Blaise Pascal
PY - 2002
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 9
IS - 1
SP - 21
EP - 62
LA - eng
KW - ergodic theory; homogenization; subadditive processes; nonlinear elasticity
UR - http://eudml.org/doc/79242
ER -
References
top- [1] Y. Abddaimi. Homogénéisation de quelques problèmes en analyse variationnelle, application des théorèmes ergodiques sous-additifs. Thèse, Univerité Montpellier 2, 1996.
- [2] Y. Abddaimi, C. Licht, and G. Michaille. Stochastic homogenization for an integral functional of quasiconvex function with linear growth. Asymptotic Analysis, 15:183-202, 1997. Zbl0912.49013MR1480998
- [3] M.A. Ackoglu and U. Krengel. Ergodic theorems for superadditive processes. J. Reine angew. Math., 323:53-67, 1981. Zbl0453.60039MR611442
- [4] H. Attouch. Variational Convergence for Functions and Operators. Pitman Advanced Publishing Program, London, 1985. Zbl0561.49012MR773850
- [5] H. Attouch and R J.B. Wets. Epigraphical processes : laws of large numbers for random lsc functions. Séminaire d'Analyse Convexe, 13, 1990. Zbl0744.60021MR1114683
- [6] M. Bellieud and G. Bouchitté. Homogenization of elliptic problems in a fiber reinforced structure. Ann. Scuola Norm. Sup. Pisa, Serie IV, XXVI, 4, 1998. Zbl0919.35014MR1635769
- [7] G. Bouchitté, I. Fonseca, and L. Mascarenhas. A global method for relaxation. Arch. Rational Mech. Anal., 145:51-98, 1998. Zbl0921.49004MR1656477
- [8] A. Braides. Homogenization of some almost-periodic functional. Rend. Accad. Naz. XL, 103:313-322, 1985. Zbl0582.49014MR899255
- [9] B. Dacorogna. Direct methods in the Calculus of Variations. Springer-Verlag, Berlin, 1989. Zbl0703.49001MR990890
- [10] C. Hess. Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator. The Annals of Statistics, 24:1298-1315, 1996. Zbl0862.62029MR1401851
- [11] U. Krengel. Ergodic Theorems. Walter de Gruyter, Berlin, New York, 1985. Zbl0575.28009MR797411
- [12] C. Licht and G. Michaille. Une modélisation du comportement d'un joint collé élastique. C.R. Acad. Sci. Paris, 322, Série I:295-300, 1996. Zbl0863.73019MR1378271
- [13] C. Licht and G. Michaille. A modelling of elastic adhesive bonding joints. Mathematical Sciences and Applications, 7:711-740, 1997. Zbl0892.73007MR1476274
- [14] G. Dal Masoand L. Modica. Non linear stochastic homogenization and ergodic theory. J. Reine angew. Math., 363:27-43, 1986. Zbl0582.60034MR850613
- [15] G. Michaille, J. Michel, and L. Piccinini. Large deviations estimates for epigraphical superadditive processes in stochastic homogenization. prepublication ENSLyon, 220, 1998.
- [16] S. Muller. Homogenization of non convex integral functionals and cellular elastic material. Arch. Rational Mech. Anal., 7:189-212, 1987. Zbl0629.73009
- [17] R.T. Rockafellar. Integral functionals, normal integrands and measurable selections. Lecture Notes in Mathematics, 543:133-158, 1979. Zbl0374.49001MR512209
- [18] Nguyen Xuhan Xanhand H. Zessin. Ergodic theorems for spatial processes. Z. Wah. Verw. Gebiete, 48:133-158, 1979. Zbl0397.60080MR534841
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.