Large time estimates for non-symmetric heat kernel on the affine group
Annales mathématiques Blaise Pascal (2002)
- Volume: 9, Issue: 1, page 63-78
- ISSN: 1259-1734
Access Full Article
topHow to cite
topMelzi, Camillo. "Large time estimates for non-symmetric heat kernel on the affine group." Annales mathématiques Blaise Pascal 9.1 (2002): 63-78. <http://eudml.org/doc/79243>.
@article{Melzi2002,
author = {Melzi, Camillo},
journal = {Annales mathématiques Blaise Pascal},
keywords = {affine group; Laplacian with drift; heat kernel; large time upper estimate},
language = {eng},
number = {1},
pages = {63-78},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Large time estimates for non-symmetric heat kernel on the affine group},
url = {http://eudml.org/doc/79243},
volume = {9},
year = {2002},
}
TY - JOUR
AU - Melzi, Camillo
TI - Large time estimates for non-symmetric heat kernel on the affine group
JO - Annales mathématiques Blaise Pascal
PY - 2002
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 9
IS - 1
SP - 63
EP - 78
LA - eng
KW - affine group; Laplacian with drift; heat kernel; large time upper estimate
UR - http://eudml.org/doc/79243
ER -
References
top- [1] G. Alexopoulos. Sublaplacians on groups of polynomial growth. Mem. Amer. Math. Soc., to appear. Zbl0908.22013MR1878341
- [2] R. Azencott. Géodésiques et diffusions en temps petit. Astérisque, 84-85:17-31, 1981. Zbl0507.60070MR634964
- [3] Ph. Bougerol. Comportement asymptotique des puissances de convolution d'une probabilité sur un espace symétrique. Astérisque, 74:29-45, 1980. Zbl0463.60009MR588156
- [4] E.B. Davies and N. Mandouvalos. Heat bounds on hyperbolic space and Kleinian groups. Proc. London Math. Soc. (3), 52:182-208, 1988. Zbl0643.30035MR940434
- [5] A. Grigor'yan. Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Differential Geometry, 45:33-52, 1997. Zbl0865.58042MR1443330
- [6] A. Grigor'yan. Estimates of heat kernels on Riemannian manifolds. In B. Davies and Yu. Safarov, editors, Spectral Theory and Gemetry. Edinburgh 1998, pages 140-225. London Math. Soc. Lectures Nte Series 273, Cambridge Univ. Press, 1998. Zbl0985.58007MR1736868
- [7] G.A. Hunt. Semi-groups of measures on Lie groups. A.M.S., 81:264-293, 1956. Zbl0073.12402MR79232
- [8] S. Mustapha. Gaussian estimates for heat kernels on Lie groups. Math. Proc. Camb. Phil. Soc., 128:45-64, 2000. Zbl0947.22007MR1724427
- [9] A. Nagel, E. Stein, and M. Wainger. Balls and metrics defined by vector fields. Acta Math., 155:103-147, 1985. Zbl0578.32044MR793239
- [10] V.I. Ushakov. Stabilization of solutions of the third mixed problem for a second order parabolic equation in a non-cyclic domain (Engl. trans.). Math. USSR Sb., 39:87-105, 1981. Zbl0462.35048MR560465
- [11] N. Varopoulos. Small time gaussian estimates of heat diffusion kernels. Part I: The semi-group technique. Bull. Sc. Math., 113:253-277, 1989. Zbl0703.58052MR1016211
- [12] N. Varopoulos. Small time gaussian estimates of heat diffusion kernels. Part II: The theory of large deviations. J. Funct. Anal., 93:1-33, 1990. Zbl0712.58056MR1070036
- [13] N. Varopoulos. Analysis on Lie groups. Rev. Mat. Iberoamericana, 12:791-917, 1996. Zbl0881.22009MR1435484
- [14] N. Varopoulos and S. Mustapha. Forthcoming book. Cambridge University Press.
- [15] N. Varopoulos, L. Saloff-Coste, and Th. Coulhon. Analysis and geometry on groups. Cambridge Univ. Press, Cambridge, 1992. Zbl1179.22009MR1218884
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.