Eberlein-compacts et espaces de Radon

W. Schachermayer

Annales scientifiques de l'Université de Clermont. Mathématiques (1976)

  • Volume: 61, Issue: 14, page 129-143
  • ISSN: 0249-7042

How to cite

top

Schachermayer, W.. "Eberlein-compacts et espaces de Radon." Annales scientifiques de l'Université de Clermont. Mathématiques 61.14 (1976): 129-143. <http://eudml.org/doc/80447>.

@article{Schachermayer1976,
author = {Schachermayer, W.},
journal = {Annales scientifiques de l'Université de Clermont. Mathématiques},
language = {fre},
number = {14},
pages = {129-143},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {Eberlein-compacts et espaces de Radon},
url = {http://eudml.org/doc/80447},
volume = {61},
year = {1976},
}

TY - JOUR
AU - Schachermayer, W.
TI - Eberlein-compacts et espaces de Radon
JO - Annales scientifiques de l'Université de Clermont. Mathématiques
PY - 1976
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 61
IS - 14
SP - 129
EP - 143
LA - fre
UR - http://eudml.org/doc/80447
ER -

References

top
  1. [1] Amir D. et Lindenstrauss J.: The structure of weakly compact sets in Banach spaces. Ann. of Math.88(1968) p. 35-46. Zbl0164.14903MR228983
  2. [2] Billingsley P.: Convergence of probability measures, J. Wiley1968. Zbl0172.21201MR233396
  3. [3] Diestel J.: Geometry of Banach spaces, Springer lecture notes485. Zbl0307.46009
  4. [4] Engelking R.: An outline of topology; North Holland Publishing Company1968. Zbl0157.53001MR230273
  5. [5] Gardner R.J.: The regularity of Borel-measures and Borel-measure-compactness, Proc. London Math. Soc.30(1975) 95-113. Zbl0294.28001MR367145
  6. [6] Moran W.: Measures on metacompact spaces, Proc. London Math. Soc. (3) 20 (1970) 507-24. Zbl0199.37802MR437706
  7. [7] Oxtoby J.C.: Measure and Category, Springer1971. Zbl0217.09201MR584443
  8. [8] Rosenthal H.P.: The heriditary problem for weakly compactly generated Banach spaces. Compositi o Math. vol.28 (1974), 83-111. Zbl0298.46013MR417762
  9. [9] Halmos P.R.: Measure Theory, van Nostrand1950. Zbl0040.16802MR33869
  10. [10] Schwartz L.: Radon-measures on arbitrary topological spaces, Oxford University press1973. Zbl0298.28001MR426084
  11. [11] Schwartz L.: Exposé XXIII du séminaire Maurey-Schwartz1975/76. 
  12. [12] Shoenfield J.R.: Mathematical logic. Reading, Mass., Addison Wesley1967. Zbl0155.01102MR225631
  13. [13] Sunyach C.: Une caractérisation des espaces universellement mesurables, C.R.A.S. Paris, 268, p. 864-866. Zbl0191.34201MR248321
  14. [14] Ulam S.: Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math.XVI, 1930. JFM56.0920.04
  15. [15] Varadarajan V.S.: Measures on topological spaces, Am. Math. Soc. Transl.2, 48(1965) p. 161-228. Zbl0152.04202

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.