Jordan algebras and mutation algebras. homotopy and von Neumann regularity
Annales scientifiques de l'Université de Clermont. Mathématiques (1991)
- Volume: 97, Issue: 27, page 177-191
- ISSN: 0249-7042
Access Full Article
topHow to cite
topGonzales Jimenez, Santos. "Jordan algebras and mutation algebras. homotopy and von Neumann regularity." Annales scientifiques de l'Université de Clermont. Mathématiques 97.27 (1991): 177-191. <http://eudml.org/doc/80584>.
@article{GonzalesJimenez1991,
author = {Gonzales Jimenez, Santos},
journal = {Annales scientifiques de l'Université de Clermont. Mathématiques},
keywords = {-mutations; homotopy; von Neumann regularity; idempotent ring; order relation},
language = {eng},
number = {27},
pages = {177-191},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {Jordan algebras and mutation algebras. homotopy and von Neumann regularity},
url = {http://eudml.org/doc/80584},
volume = {97},
year = {1991},
}
TY - JOUR
AU - Gonzales Jimenez, Santos
TI - Jordan algebras and mutation algebras. homotopy and von Neumann regularity
JO - Annales scientifiques de l'Université de Clermont. Mathématiques
PY - 1991
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 97
IS - 27
SP - 177
EP - 191
LA - eng
KW - -mutations; homotopy; von Neumann regularity; idempotent ring; order relation
UR - http://eudml.org/doc/80584
ER -
References
top- 1 A. Abian, Direct product decomposition of commutative semi-simple rings, Proc. AMS24, 502-507, 1970. Zbl0207.05002MR258815
- 2 A. Albert, Nonassociative algebras I. Fundamental concepts of isotopy. Ann. of Math. (2), 43, 687-707, 1942. Zbl0061.04807MR7747
- 3 A. Albert, Power-associative rings, Trans. AMS64, 552-593, 1948. Zbl0033.15402MR27750
- 4 Bruck, Contributions to the theory of loops, Trans., MAS 60, 245-354, 1946. Zbl0061.02201MR17288
- 5 Elduque, Gonzalez, Martinez, Unit element in mutation algebras, Algebras, Groups and Geometries, 1, 386-398, 1984. Zbl0553.17006MR773343
- 6 Gonzalez, Martinez, Lie mutation of an associative algebra, Algebras, Groupes and Geometries, to appear. Zbl0586.17012
- 7 Gonzalez, Martinez, Homotopia y regularided von Neumann en algebras asociativas y alternativas, VII Jordanas de Matematicos de Expresion Latina, Coimbra, 1985.
- 8 Gonzales, Martinez, Homotope and mutation algebras of a non-associative algebra, Algebras, Groupes and Geometries, to appear. Zbl0586.17013
- 9 Kalnay, Lie-admissible structure of a quantized Nambus generalized hamiltonian dynamics, Hadronic J.6, 1983. Zbl0543.70025
- 10 Lambeck, Lectures on Rings and Modules, Boston1966. Zbl0143.26403
- 11 McCrimmon, Homotope of alternative algebras, Math. Ann.192,1971. Zbl0203.33802MR313344
- 12 McCrimmon, A characterization of the Jacobson-Smiley radical, J. of Algebra18, 1971. Zbl0241.17010MR277585
- 13 McCrimmon, Homotopes of noncommutative Jordan algebras, Math. Ann.191, 1971. Zbl0224.17002MR313333
- 14 McCrinimon, A characterization of the radical of a Jordan algebra, J. Algebra18, 1971. Zbl0243.17013MR277583
- 15 Myung-Jimenez, Direct product decomposition of alternative rings, Proc. AMS47, 1975. Zbl0301.17004MR354796
- 16 Myung, Conditions for alternative rings to be Boolean, Algebra Universalis 5, 1975. Zbl0328.17006MR396712
- 17 Myung, The exponentation and deformations of Lie-admissible algebras, Hadronic J.5, 777, 1982. Zbl0488.17007MR659667
- 18 Myung, A generalization of Hermitian and unitary operators in a Hilbert space, Hadronic J.7, 76-87, 1984. Zbl0593.47020MR738708
- 19 Myung, An isotensor product of iso-Hilbert spaces, to appear. Zbl0586.46053
- 20 Schafer, Alternative algebras over an arbitrary field, Bull AMS, 49, 1943. Zbl0061.05201MR8610
- 21 Schafer, An introduction to nonassociative algebras, Academic PressN-Y. 1966. Zbl0145.25601MR210757
- 22 Zhelakov, Slinko, Shestakov, Shirshov, Rings that are nearly associtive, Academic Press, 1982. Zbl0487.17001MR668355
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.