A zero-two theorem for a certain class of positive contractions in finite dimensional L P -spaces ( 1 p < + )

R. Zaharopol

Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications (1984)

  • Volume: 78, Issue: 2, page 9-13
  • ISSN: 0246-1501

How to cite

top

Zaharopol, R.. "A zero-two theorem for a certain class of positive contractions in finite dimensional $L^P$-spaces $(1 \leqslant p &lt; + \infty )$." Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications 78.2 (1984): 9-13. <http://eudml.org/doc/80611>.

@article{Zaharopol1984,
author = {Zaharopol, R.},
journal = {Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications},
language = {eng},
number = {2},
pages = {9-13},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {A zero-two theorem for a certain class of positive contractions in finite dimensional $L^P$-spaces $(1 \leqslant p &lt; + \infty )$},
url = {http://eudml.org/doc/80611},
volume = {78},
year = {1984},
}

TY - JOUR
AU - Zaharopol, R.
TI - A zero-two theorem for a certain class of positive contractions in finite dimensional $L^P$-spaces $(1 \leqslant p &lt; + \infty )$
JO - Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications
PY - 1984
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 78
IS - 2
SP - 9
EP - 13
LA - eng
UR - http://eudml.org/doc/80611
ER -

References

top
  1. 1 Neveu, J.: "Mathematical foundations of the calculus of probability", San Francisco, London, Amsterdam: Holden Day1965. Zbl0137.11301MR198505
  2. 2 Ornstein, D. and Sucheston, L.: "An operator Theorem on L. convergence to zero with applications to Markov kernels". Ann. Math. Statist.1970 vol. 41, no. 5, 1631-1639. Zbl0284.60068MR272057

NotesEmbed ?

top

You must be logged in to post comments.