A zero-two theorem for a certain class of positive contractions in finite dimensional -spaces
Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications (1984)
- Volume: 78, Issue: 2, page 9-13
- ISSN: 0246-1501
Access Full Article
topHow to cite
topZaharopol, R.. "A zero-two theorem for a certain class of positive contractions in finite dimensional $L^P$-spaces $(1 \leqslant p < + \infty )$." Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications 78.2 (1984): 9-13. <http://eudml.org/doc/80611>.
@article{Zaharopol1984,
author = {Zaharopol, R.},
journal = {Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications},
language = {eng},
number = {2},
pages = {9-13},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {A zero-two theorem for a certain class of positive contractions in finite dimensional $L^P$-spaces $(1 \leqslant p < + \infty )$},
url = {http://eudml.org/doc/80611},
volume = {78},
year = {1984},
}
TY - JOUR
AU - Zaharopol, R.
TI - A zero-two theorem for a certain class of positive contractions in finite dimensional $L^P$-spaces $(1 \leqslant p < + \infty )$
JO - Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications
PY - 1984
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 78
IS - 2
SP - 9
EP - 13
LA - eng
UR - http://eudml.org/doc/80611
ER -
References
top- 1 Neveu, J.: "Mathematical foundations of the calculus of probability", San Francisco, London, Amsterdam: Holden Day1965. Zbl0137.11301MR198505
- 2 Ornstein, D. and Sucheston, L.: "An operator Theorem on L. convergence to zero with applications to Markov kernels". Ann. Math. Statist.1970 vol. 41, no. 5, 1631-1639. Zbl0284.60068MR272057
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.