The Radon-Nikodym property and convergence of amarts in Frechet spaces

Dinh Quang Luu

Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications (1985)

  • Volume: 85, Issue: 3, page 1-19
  • ISSN: 0246-1501

How to cite

top

Dinh Quang Luu. "The Radon-Nikodym property and convergence of amarts in Frechet spaces." Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications 85.3 (1985): 1-19. <http://eudml.org/doc/80613>.

@article{DinhQuangLuu1985,
author = {Dinh Quang Luu},
journal = {Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications},
keywords = {Fréchet space; Radon-Nikodym property; amart; Pettis topology; convergence of amarts},
language = {eng},
number = {3},
pages = {1-19},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {The Radon-Nikodym property and convergence of amarts in Frechet spaces},
url = {http://eudml.org/doc/80613},
volume = {85},
year = {1985},
}

TY - JOUR
AU - Dinh Quang Luu
TI - The Radon-Nikodym property and convergence of amarts in Frechet spaces
JO - Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications
PY - 1985
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 85
IS - 3
SP - 1
EP - 19
LA - eng
KW - Fréchet space; Radon-Nikodym property; amart; Pettis topology; convergence of amarts
UR - http://eudml.org/doc/80613
ER -

References

top
  1. [1] Ch. Castaing and M. Valadier, Convex analysis and measurable multifunctions. Lecture Notes in Math. n° 58Springer-Verlag1977. Zbl0346.46038MR467310
  2. [2] S.D. Chaterji, Martingale convergence and the Radon-Nikodym theorem in Banach spaces. Math. Scand.22(1968) 21-41. Zbl0175.14503MR246341
  3. [3] G.Y.H. Chi, A geometric characterization of Fréchet spaces with the Radon-Nikodym property. Proc. Amer. Math. Soc. Vol. 48 n° 2 (1975). Zbl0301.46031MR357730
  4. [4] G.Y.H. Chi, On the Radon-Nikodym theorem and locally convex spaces with the Radon-Nikodym property. Proc. Amer. Math. Soc. Vol. 62, n° 2 (1977) 245-253. Zbl0348.46033MR435338
  5. [5] J.P. Daurès, Opérateurs extrémaux et décomposables, convergence des martingales multivoques. Thèse de Doctorat de Spécialité, Montpellier1972. 
  6. [6] J. Hoffmann-Jørgensen, Vector-Measures, Math. Scand.2B (1971) 5-32. Zbl0217.38001MR306438
  7. [7] D.Q. Luu, Stability and Convergence of Amarts in Fréchet spaces. Acta Math. Acad. Sci. Hungaricae Vol. 45/1-2 (1985) to appear. Zbl0655.46003MR779522
  8. [8] J. Neveu, Martingales à temps discret, Masson et Cie, Paris1972. MR402914
  9. [9] M.A. Rieffel, The Radon-Nikodym theorem for the Bochner integral. T.A.M.S.131(1968) 466-487. Zbl0169.46803MR222245
  10. [10] Rønnov V., On integral representation of vector-valued measures, Math. Scand.21 (1967) 45-53. Zbl0177.18702MR243030
  11. [11] H.H. Schaeffer, Topological Vector Spaces. Macmillan, New York1966. Zbl0141.30503MR193469
  12. [12] J.J. Uhl, Jr Applications of Radon-Nikodym theorems to martingale convergence, T.A.M.S. Vol. 145 (1969) 271-285. Zbl0211.21903MR251756

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.