The Radon-Nikodym property and convergence of amarts in Frechet spaces
Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications (1985)
- Volume: 85, Issue: 3, page 1-19
- ISSN: 0246-1501
Access Full Article
topHow to cite
topDinh Quang Luu. "The Radon-Nikodym property and convergence of amarts in Frechet spaces." Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications 85.3 (1985): 1-19. <http://eudml.org/doc/80613>.
@article{DinhQuangLuu1985,
author = {Dinh Quang Luu},
journal = {Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications},
keywords = {Fréchet space; Radon-Nikodym property; amart; Pettis topology; convergence of amarts},
language = {eng},
number = {3},
pages = {1-19},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {The Radon-Nikodym property and convergence of amarts in Frechet spaces},
url = {http://eudml.org/doc/80613},
volume = {85},
year = {1985},
}
TY - JOUR
AU - Dinh Quang Luu
TI - The Radon-Nikodym property and convergence of amarts in Frechet spaces
JO - Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications
PY - 1985
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 85
IS - 3
SP - 1
EP - 19
LA - eng
KW - Fréchet space; Radon-Nikodym property; amart; Pettis topology; convergence of amarts
UR - http://eudml.org/doc/80613
ER -
References
top- [1] Ch. Castaing and M. Valadier, Convex analysis and measurable multifunctions. Lecture Notes in Math. n° 58Springer-Verlag1977. Zbl0346.46038MR467310
- [2] S.D. Chaterji, Martingale convergence and the Radon-Nikodym theorem in Banach spaces. Math. Scand.22(1968) 21-41. Zbl0175.14503MR246341
- [3] G.Y.H. Chi, A geometric characterization of Fréchet spaces with the Radon-Nikodym property. Proc. Amer. Math. Soc. Vol. 48 n° 2 (1975). Zbl0301.46031MR357730
- [4] G.Y.H. Chi, On the Radon-Nikodym theorem and locally convex spaces with the Radon-Nikodym property. Proc. Amer. Math. Soc. Vol. 62, n° 2 (1977) 245-253. Zbl0348.46033MR435338
- [5] J.P. Daurès, Opérateurs extrémaux et décomposables, convergence des martingales multivoques. Thèse de Doctorat de Spécialité, Montpellier1972.
- [6] J. Hoffmann-Jørgensen, Vector-Measures, Math. Scand.2B (1971) 5-32. Zbl0217.38001MR306438
- [7] D.Q. Luu, Stability and Convergence of Amarts in Fréchet spaces. Acta Math. Acad. Sci. Hungaricae Vol. 45/1-2 (1985) to appear. Zbl0655.46003MR779522
- [8] J. Neveu, Martingales à temps discret, Masson et Cie, Paris1972. MR402914
- [9] M.A. Rieffel, The Radon-Nikodym theorem for the Bochner integral. T.A.M.S.131(1968) 466-487. Zbl0169.46803MR222245
- [10] Rønnov V., On integral representation of vector-valued measures, Math. Scand.21 (1967) 45-53. Zbl0177.18702MR243030
- [11] H.H. Schaeffer, Topological Vector Spaces. Macmillan, New York1966. Zbl0141.30503MR193469
- [12] J.J. Uhl, Jr Applications of Radon-Nikodym theorems to martingale convergence, T.A.M.S. Vol. 145 (1969) 271-285. Zbl0211.21903MR251756
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.