Amarts of finite order and Pettis Cauchy sequences of Bochner integrable functions in locally convex spaces
Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications (1985)
- Volume: 85, Issue: 3, page 91-106
- ISSN: 0246-1501
Access Full Article
topHow to cite
topDinh Quang Luu. "Amarts of finite order and Pettis Cauchy sequences of Bochner integrable functions in locally convex spaces." Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications 85.3 (1985): 91-106. <http://eudml.org/doc/80621>.
@article{DinhQuangLuu1985,
author = {Dinh Quang Luu},
journal = {Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications},
keywords = {Hausdorff locally convex quasi-complete space; amart of finite order; Pettis mean convergence theorems},
language = {eng},
number = {3},
pages = {91-106},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {Amarts of finite order and Pettis Cauchy sequences of Bochner integrable functions in locally convex spaces},
url = {http://eudml.org/doc/80621},
volume = {85},
year = {1985},
}
TY - JOUR
AU - Dinh Quang Luu
TI - Amarts of finite order and Pettis Cauchy sequences of Bochner integrable functions in locally convex spaces
JO - Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications
PY - 1985
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 85
IS - 3
SP - 91
EP - 106
LA - eng
KW - Hausdorff locally convex quasi-complete space; amart of finite order; Pettis mean convergence theorems
UR - http://eudml.org/doc/80621
ER -
References
top- [1] C. Blondia, Locally convex spaces with the Radon-Nikodym property, Math. Nachr, 114(1983) 335-341. Zbl0557.46015MR745066
- [2] B. Bru, H. Heinich, Sur l'espérance des variables aléatoires vectorielles. Ann. Inst. Henri Poincaré, Vol. XVI, n° 3 (1980) 177-196. Zbl0472.60010MR595198
- [3] C. Castaing, M. Valadier, Convex analysis and measurable multifunctions. Lecture Notes in Math. N° 580, Springer-Verlag1977. Zbl0346.46038MR467310
- [4] R.V. Chacon, L. Sucheston, On convergence of vector-valued asymptotic martingales, Z. Wahrsch. Verw. Gebiete33 (1975) 55-59. Zbl0297.60005MR394859
- [5] G.Y.H. Chi, On the Radon-Nikodym theorem and locally convex spaces with the Radon-Nikodym property. Proc. Amer. Math. Soc. Vol. 62, n° 2 (1977) 245-253. Zbl0348.46033MR435338
- [6] G.A. Edgar, L. Sucheston, Amarts: A class of asymptotic martingales (Discrete parameter). J. Multiv. Anal.6 (1976) 193-221. Zbl0336.60033MR413251
- [7] L. Egghe, The Radon-Nikodym property, σ-dentability and martingales in locally convex spaces. Pac. Jour. Math. Vol. 87, N° 2 (1980) 335-341. Zbl0393.60005
- [8] J. Hoffmann-Jørgensen, Vector measures. Math. Scand.28 (1971)5-32. Zbl0217.38001MR306438
- [9] Dinh Quang Luu, Applications of set-valued Radon-Nikodym theorems to convergence of multivalued L1-amarts. Math. Scand.54(1984) 101-113. Zbl0562.60057MR753067
- [10] Dinh Quang Luu, The Radon-Nikodym property and convergence of amarts in Fréchet spaces. Ann. Inst. Clermont, Sér. Prob. Statist. N° 3, to appear. Zbl0568.60045
- [11] J. Neveu, Martingales à temps discrets. Masson Cie, Paris1972. MR402914
- [12] A. Pietsch, Nuclear locally convex spaces. Springer-Verlag, Berlin66, 1972. Zbl0236.46001MR350360
- [13] Jr. Uhl J.J., Pettis mean convergence of vector-valued asymptotic martingales. Z. Wahrsch. Verw. Gebiete37(1977) 291-295. Zbl0325.60046MR571670
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.