Amarts of finite order and Pettis Cauchy sequences of Bochner integrable functions in locally convex spaces

Dinh Quang Luu

Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications (1985)

  • Volume: 85, Issue: 3, page 91-106
  • ISSN: 0246-1501

How to cite

top

Dinh Quang Luu. "Amarts of finite order and Pettis Cauchy sequences of Bochner integrable functions in locally convex spaces." Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications 85.3 (1985): 91-106. <http://eudml.org/doc/80621>.

@article{DinhQuangLuu1985,
author = {Dinh Quang Luu},
journal = {Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications},
keywords = {Hausdorff locally convex quasi-complete space; amart of finite order; Pettis mean convergence theorems},
language = {eng},
number = {3},
pages = {91-106},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {Amarts of finite order and Pettis Cauchy sequences of Bochner integrable functions in locally convex spaces},
url = {http://eudml.org/doc/80621},
volume = {85},
year = {1985},
}

TY - JOUR
AU - Dinh Quang Luu
TI - Amarts of finite order and Pettis Cauchy sequences of Bochner integrable functions in locally convex spaces
JO - Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications
PY - 1985
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 85
IS - 3
SP - 91
EP - 106
LA - eng
KW - Hausdorff locally convex quasi-complete space; amart of finite order; Pettis mean convergence theorems
UR - http://eudml.org/doc/80621
ER -

References

top
  1. [1] C. Blondia, Locally convex spaces with the Radon-Nikodym property, Math. Nachr, 114(1983) 335-341. Zbl0557.46015MR745066
  2. [2] B. Bru, H. Heinich, Sur l'espérance des variables aléatoires vectorielles. Ann. Inst. Henri Poincaré, Vol. XVI, n° 3 (1980) 177-196. Zbl0472.60010MR595198
  3. [3] C. Castaing, M. Valadier, Convex analysis and measurable multifunctions. Lecture Notes in Math. N° 580, Springer-Verlag1977. Zbl0346.46038MR467310
  4. [4] R.V. Chacon, L. Sucheston, On convergence of vector-valued asymptotic martingales, Z. Wahrsch. Verw. Gebiete33 (1975) 55-59. Zbl0297.60005MR394859
  5. [5] G.Y.H. Chi, On the Radon-Nikodym theorem and locally convex spaces with the Radon-Nikodym property. Proc. Amer. Math. Soc. Vol. 62, n° 2 (1977) 245-253. Zbl0348.46033MR435338
  6. [6] G.A. Edgar, L. Sucheston, Amarts: A class of asymptotic martingales (Discrete parameter). J. Multiv. Anal.6 (1976) 193-221. Zbl0336.60033MR413251
  7. [7] L. Egghe, The Radon-Nikodym property, σ-dentability and martingales in locally convex spaces. Pac. Jour. Math. Vol. 87, N° 2 (1980) 335-341. Zbl0393.60005
  8. [8] J. Hoffmann-Jørgensen, Vector measures. Math. Scand.28 (1971)5-32. Zbl0217.38001MR306438
  9. [9] Dinh Quang Luu, Applications of set-valued Radon-Nikodym theorems to convergence of multivalued L1-amarts. Math. Scand.54(1984) 101-113. Zbl0562.60057MR753067
  10. [10] Dinh Quang Luu, The Radon-Nikodym property and convergence of amarts in Fréchet spaces. Ann. Inst. Clermont, Sér. Prob. Statist. N° 3, to appear. Zbl0568.60045
  11. [11] J. Neveu, Martingales à temps discrets. Masson Cie, Paris1972. MR402914
  12. [12] A. Pietsch, Nuclear locally convex spaces. Springer-Verlag, Berlin66, 1972. Zbl0236.46001MR350360
  13. [13] Jr. Uhl J.J., Pettis mean convergence of vector-valued asymptotic martingales. Z. Wahrsch. Verw. Gebiete37(1977) 291-295. Zbl0325.60046MR571670

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.