Invariant sets of solutions of Navier-Stokes and related evolution equations - A survey
Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications (1986)
- Volume: 88, Issue: 5, page 25-47
- ISSN: 0246-1501
Access Full Article
topHow to cite
topBiler, P.. "Invariant sets of solutions of Navier-Stokes and related evolution equations - A survey." Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications 88.5 (1986): 25-47. <http://eudml.org/doc/80633>.
@article{Biler1986,
author = {Biler, P.},
journal = {Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications},
keywords = {bibliography; evolution type equations; finite dimensionality; invariant},
language = {eng},
number = {5},
pages = {25-47},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {Invariant sets of solutions of Navier-Stokes and related evolution equations - A survey},
url = {http://eudml.org/doc/80633},
volume = {88},
year = {1986},
}
TY - JOUR
AU - Biler, P.
TI - Invariant sets of solutions of Navier-Stokes and related evolution equations - A survey
JO - Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications
PY - 1986
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 88
IS - 5
SP - 25
EP - 47
LA - eng
KW - bibliography; evolution type equations; finite dimensionality; invariant
UR - http://eudml.org/doc/80633
ER -
References
top- 1 A.V. Babin, M.I. Vishik, Attractor of the Navier-Stokes system and the parabolic equations and an estimate of their dimension, Zap. Nauch. Sem. LOMI, 115, 1982, 3-15. Zbl0507.35076MR660067
- 2 -,,-, Attractors of the evolution partial differential equations and estimates of their dimension, Usp. Mat. Nauk, 38,4, 1983, 133-187. Zbl0541.35038MR710119
- 3 -,,-, Regular attractors of semigroups and evolution equations, J. Math. pures appl.62, 1983, 441-491. Zbl0565.47045MR735932
- 4 -,,-, Estimates from above and below for the dimension of attractors of evolution equations, Sib.Mat. Zh.24,5, 1983, 15-30.
- 5 -,,-, Attracteurs maximaux dans les equations aux dérivées partielles, Collège de France, Séminaire 1984, vol. VI, Pitman, Res.Notes in Math. and (in this volume ) A. Haraux, Two remarks on dissipative hyperbolic problems.
- 6 -,,-, Maximal attractors of semigroups corresponding to evolution differential equations, Mat. Sb.126,3, 1985, 397-419. Zbl0611.35033MR783953
- 7 Z.B. Berkaliev, Attractors of evolution equations of nonlinear viscoelasticity, Vestnik MGU, 5, 1985, 69-71. Zbl0609.47076
- 8 P. Biler, Large time behaviour of periodic solutions to dissipative equations of Korteweg-de Vries-Burgers type, Bull.Pol.Acad.Sc. Math.32, 1984, 401-405. Zbl0561.35065MR782755
- 9 A.N. Chetaev, Neuron networks and Markov chains, Nauka, Moscow, 1985. Zbl0571.92008MR809374
- 10 P. Constantin, C. Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D-Navier-Stokes equations, Comm. Pure Appl.Math.38, 1985, 1-27. Zbl0582.35092MR768102
- 11 P. Constantin, C. Foias, R. Temam, Attractors representing turbulent flows, Memoirs of AMS, 314, 1985. Zbl0567.35070MR776345
- 12 A. Douady, J. Oesterlé, Dimension de Hausdorff des attracteurs, C.R.Acad.Sc. Paris, 290A-B, 1980, 1135-1138. Zbl0443.58016MR585918
- 13 H. Federer, Geometric Measure Theory, Springer1969. Zbl0176.00801MR257325
- 14 C. Foias, O.P. Manley, R. Temam, Y.M. Trève, Asymptotic analysis of the Navier-Stokes equations, Physica9D, 1983, 157-188. Zbl0584.35007MR732571
- 15 C. Foias, B. Nicolaenko, G.R. Sell, R. Temam, variétés inertielles pour l'équation de Kuramoto-Sivashinski, C.R.Acad.Sc. Paris, 301, 1985, 285-288. Zbl0591.35063MR803219
- 16 C. Foias, G.R. Sell, R. Temam, Variétés inertielles des equations différentielles dissipatives, C.R. Acad.Sc. Paris, 301, 1985, 139-141. Zbl0591.35062MR801946
- 17 C. Foias, R. Temam, Some analytic and geometric properties of the solutions of the Navier-Stokes equations, J.Math. pures appl.58, 1979, 339-368. Zbl0454.35073MR544257
- 18 C. Foias, R. Temam, A specifically nonlinear property of the operator semigroup of the Navier-Stokes equations, Comm. Pure Appl. Math.35, 1982, 197-207. Zbl0502.76042MR644023
- 19 C. Foias, R. Temam, On the Hausdorff dimension of an attractor for the two dimensional Navier-Stokes equations, Physics Letters93A, 1983, 431-434. MR697674
- 20 A. Fora, A fixed point theorem for product spaces, Pacific. J. Math.99, 1982, 327-335. Zbl0481.54025MR658063
- 21 P. Frederickson, J.L. Kaplan, E.D. Yorke, A. Yorke, The Liapunov dimension of strange attractors, J.Diff.Eq.49, 1983, 185-207. Zbl0515.34040MR708642
- 22 J.-M. Ghidaglia, On the fractal dimension of attractors for viscous incompressible fluid flows, SIAM J.Math. Anal. /to appear/. Zbl0626.35078MR853521
- 23 J.-M. Ghidaglia, R. Temam, Propriétés des attracteurs associés à des équations hyperboliques non linéaires amorties, C.R.Acad.Sc. Paris, 300, 1985, 185-188. Zbl0589.58013MR780614
- 24 C. Guillopé, Comportement à l'infini des solutions des equations de Navier-Stokes et propriété des ensembles fonctionnels invariants ( ou attracteurs ), Ann. Inst. Fourier, 32, 1982, 1-37. Zbl0488.35067MR688020
- 25 J.K. Hale, Theory of Functional Differential Equations, Springer, 1977. Zbl0352.34001MR508721
- 26 J.K. Hale, L.T. Magalhães, W.M. Oliva, An Introduction to Infinite Dimensional Dynamical Systems - Geometric Theory, Springer, 1984. Zbl0533.58001MR725501
- 27 W. Hurewicz, H. Wallman, Dimension Theory, Princeton1948. Zbl0036.12501JFM67.1092.03
- 28 Yu. S. Il'yashenko, Weakly contracting systems and attractors of Galerkin approximations of Navier-Stokes equations, Usp. Mat. Nauk, 36, 3, 1981, 243-244.
- 29 -,,-, Weakly contracting systems and their attractors, Usp. Mat. Nauk, 37, 1, 1982, 166.
- 30 -,,-,On the dimension of attractors of k-contracting systems in an infinite dimensional space, Vestnik MGU, 3, 1983, 52-59. Zbl0547.58026MR705600
- 31 -,,-, A.N. Chetaev, On the dimension of attractors for a class of dissipative systems, Prikl. Mat. Mech., 46, 3, 1982, 374-381. limit Zbl0526.58029MR709669
- 32 D.A. Kamaev, Hyperbolic limit sets of evolution equations and Galerkin method, Usp. Mat. Nauk35, 3, 1980. Zbl0461.35011MR580646
- 33 -,,-, Hopf hypothesis for a class of chemical reaction equations, Zap. Nauch. Sem. LOMI, 110, 1981,57-73. MR643974
- 34 N. Kopell, D. Ruelle, Bounds on complexity in reaction-diffusion systems, Preprint IHES p/ 42, 1984. Zbl0596.35065MR821442
- 35 O.A. Ladyzhenskaya, On a dynamical system generated by Navier-Stokes equations, Zap.Nauch.Sem. LOMI, 27, 1972, 91-115 (J. Soviet Math.3, 1975, 455-479). Zbl0327.35064MR328378
- 36 -,,-, On the finiteness of the dimension of bounded invariant sets for the Navier-Stokes equations and other related dissipative systems, Zap. Nauch. Sem. LOMI, 115, 1982, 137-155. Zbl0535.76033MR660078
- 37 A. Lafon, Borne sur la dimension de Hausdorff de l'attracteur pour les équations de Navier-Stokes à deux dimensions, C. R. Acad. Ac. Paris, 298, 1984, 453-456. Zbl0575.35072MR750744
- 38 F. Ledrappier, Some relations between dimension and Lyapunov exponents, Comm.Math.Phys.81, 1981, 229-238. Zbl0486.58021MR632758
- 39. E.H. Lieb, On characteristic exponents in turbulence, Comm.Math.Phys.92, 1984, 473-480. Zbl0598.76054MR736404
- 40 J. Mallet-Paret, Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J.Diff. Eq.22, 1976, 331-348. Zbl0354.34072MR423399
- 41 R. Mañé, On the dimension of the compact invariant sets of certain non-linear maps; Dynamical Systems and Turbulence, Warwick1980, ed. by D.A. Rand, L.-S. Young, L.N.Math.898, Springer1981, 230-242. Zbl0544.58014MR654892
- 42 B. Nicolaenko, B. Scheurer, R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors, Physica16D, 155-184, 1985. Zbl0592.35013MR796268
- 43 D. Ruelle, Differentiable dynamical systems and the problem of turbulence, Bull. AMS, 5, 1981, 29-42. Zbl0474.76052MR614312
- 44 D. Ruelle, Large volume limit of the distribution of characteristic exponents in turbulence, Comm. Math. Phys.87, 1982, 287-302. Zbl0546.76083MR684105
- 45 D. Ruelle, Characteristic exponents for a viscous fluid subjected to time dependent forces, Comm. Math. Phys.93, 1984, 285-300. Zbl0565.76031MR745685
- 46 M. Sermange, R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math.36, 1983, 635-664. Zbl0524.76099MR716200
- 47 V.S. Stepanov, Regular attractors of quasilinear hyperbolic systems with dissipation, Vestnik MGU5, 1985, 74-77. Zbl0594.35067MR814280
- 48 R. Temam, Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1983. Zbl0833.35110MR764933
- 49 R. Temam, Infinite dimensional dynamical systems in fluid mechanics, Proc. AMS Summer Research Institute "Nonlinear Functional Analysis and Applications", Berkeley1983, ed. F. Browder. Zbl0598.35095
- 50 R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North Holland, 1984. Zbl0568.35002MR769654
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.