Invariant sets of solutions of Navier-Stokes and related evolution equations - A survey

P. Biler

Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications (1986)

  • Volume: 88, Issue: 5, page 25-47
  • ISSN: 0246-1501

How to cite

top

Biler, P.. "Invariant sets of solutions of Navier-Stokes and related evolution equations - A survey." Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications 88.5 (1986): 25-47. <http://eudml.org/doc/80633>.

@article{Biler1986,
author = {Biler, P.},
journal = {Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications},
keywords = {bibliography; evolution type equations; finite dimensionality; invariant},
language = {eng},
number = {5},
pages = {25-47},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {Invariant sets of solutions of Navier-Stokes and related evolution equations - A survey},
url = {http://eudml.org/doc/80633},
volume = {88},
year = {1986},
}

TY - JOUR
AU - Biler, P.
TI - Invariant sets of solutions of Navier-Stokes and related evolution equations - A survey
JO - Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications
PY - 1986
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 88
IS - 5
SP - 25
EP - 47
LA - eng
KW - bibliography; evolution type equations; finite dimensionality; invariant
UR - http://eudml.org/doc/80633
ER -

References

top
  1. 1 A.V. Babin, M.I. Vishik, Attractor of the Navier-Stokes system and the parabolic equations and an estimate of their dimension, Zap. Nauch. Sem. LOMI, 115, 1982, 3-15. Zbl0507.35076MR660067
  2. 2 -,,-, Attractors of the evolution partial differential equations and estimates of their dimension, Usp. Mat. Nauk, 38,4, 1983, 133-187. Zbl0541.35038MR710119
  3. 3 -,,-, Regular attractors of semigroups and evolution equations, J. Math. pures appl.62, 1983, 441-491. Zbl0565.47045MR735932
  4. 4 -,,-, Estimates from above and below for the dimension of attractors of evolution equations, Sib.Mat. Zh.24,5, 1983, 15-30. 
  5. 5 -,,-, Attracteurs maximaux dans les equations aux dérivées partielles, Collège de France, Séminaire 1984, vol. VI, Pitman, Res.Notes in Math. and (in this volume ) A. Haraux, Two remarks on dissipative hyperbolic problems. 
  6. 6 -,,-, Maximal attractors of semigroups corresponding to evolution differential equations, Mat. Sb.126,3, 1985, 397-419. Zbl0611.35033MR783953
  7. 7 Z.B. Berkaliev, Attractors of evolution equations of nonlinear viscoelasticity, Vestnik MGU, 5, 1985, 69-71. Zbl0609.47076
  8. 8 P. Biler, Large time behaviour of periodic solutions to dissipative equations of Korteweg-de Vries-Burgers type, Bull.Pol.Acad.Sc. Math.32, 1984, 401-405. Zbl0561.35065MR782755
  9. 9 A.N. Chetaev, Neuron networks and Markov chains, Nauka, Moscow, 1985. Zbl0571.92008MR809374
  10. 10 P. Constantin, C. Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D-Navier-Stokes equations, Comm. Pure Appl.Math.38, 1985, 1-27. Zbl0582.35092MR768102
  11. 11 P. Constantin, C. Foias, R. Temam, Attractors representing turbulent flows, Memoirs of AMS, 314, 1985. Zbl0567.35070MR776345
  12. 12 A. Douady, J. Oesterlé, Dimension de Hausdorff des attracteurs, C.R.Acad.Sc. Paris, 290A-B, 1980, 1135-1138. Zbl0443.58016MR585918
  13. 13 H. Federer, Geometric Measure Theory, Springer1969. Zbl0176.00801MR257325
  14. 14 C. Foias, O.P. Manley, R. Temam, Y.M. Trève, Asymptotic analysis of the Navier-Stokes equations, Physica9D, 1983, 157-188. Zbl0584.35007MR732571
  15. 15 C. Foias, B. Nicolaenko, G.R. Sell, R. Temam, variétés inertielles pour l'équation de Kuramoto-Sivashinski, C.R.Acad.Sc. Paris, 301, 1985, 285-288. Zbl0591.35063MR803219
  16. 16 C. Foias, G.R. Sell, R. Temam, Variétés inertielles des equations différentielles dissipatives, C.R. Acad.Sc. Paris, 301, 1985, 139-141. Zbl0591.35062MR801946
  17. 17 C. Foias, R. Temam, Some analytic and geometric properties of the solutions of the Navier-Stokes equations, J.Math. pures appl.58, 1979, 339-368. Zbl0454.35073MR544257
  18. 18 C. Foias, R. Temam, A specifically nonlinear property of the operator semigroup of the Navier-Stokes equations, Comm. Pure Appl. Math.35, 1982, 197-207. Zbl0502.76042MR644023
  19. 19 C. Foias, R. Temam, On the Hausdorff dimension of an attractor for the two dimensional Navier-Stokes equations, Physics Letters93A, 1983, 431-434. MR697674
  20. 20 A. Fora, A fixed point theorem for product spaces, Pacific. J. Math.99, 1982, 327-335. Zbl0481.54025MR658063
  21. 21 P. Frederickson, J.L. Kaplan, E.D. Yorke, A. Yorke, The Liapunov dimension of strange attractors, J.Diff.Eq.49, 1983, 185-207. Zbl0515.34040MR708642
  22. 22 J.-M. Ghidaglia, On the fractal dimension of attractors for viscous incompressible fluid flows, SIAM J.Math. Anal. /to appear/. Zbl0626.35078MR853521
  23. 23 J.-M. Ghidaglia, R. Temam, Propriétés des attracteurs associés à des équations hyperboliques non linéaires amorties, C.R.Acad.Sc. Paris, 300, 1985, 185-188. Zbl0589.58013MR780614
  24. 24 C. Guillopé, Comportement à l'infini des solutions des equations de Navier-Stokes et propriété des ensembles fonctionnels invariants ( ou attracteurs ), Ann. Inst. Fourier, 32, 1982, 1-37. Zbl0488.35067MR688020
  25. 25 J.K. Hale, Theory of Functional Differential Equations, Springer, 1977. Zbl0352.34001MR508721
  26. 26 J.K. Hale, L.T. Magalhães, W.M. Oliva, An Introduction to Infinite Dimensional Dynamical Systems - Geometric Theory, Springer, 1984. Zbl0533.58001MR725501
  27. 27 W. Hurewicz, H. Wallman, Dimension Theory, Princeton1948. Zbl0036.12501JFM67.1092.03
  28. 28 Yu. S. Il'yashenko, Weakly contracting systems and attractors of Galerkin approximations of Navier-Stokes equations, Usp. Mat. Nauk, 36, 3, 1981, 243-244. 
  29. 29 -,,-, Weakly contracting systems and their attractors, Usp. Mat. Nauk, 37, 1, 1982, 166. 
  30. 30 -,,-,On the dimension of attractors of k-contracting systems in an infinite dimensional space, Vestnik MGU, 3, 1983, 52-59. Zbl0547.58026MR705600
  31. 31 -,,-, A.N. Chetaev, On the dimension of attractors for a class of dissipative systems, Prikl. Mat. Mech., 46, 3, 1982, 374-381. limit Zbl0526.58029MR709669
  32. 32 D.A. Kamaev, Hyperbolic limit sets of evolution equations and Galerkin method, Usp. Mat. Nauk35, 3, 1980. Zbl0461.35011MR580646
  33. 33 -,,-, Hopf hypothesis for a class of chemical reaction equations, Zap. Nauch. Sem. LOMI, 110, 1981,57-73. MR643974
  34. 34 N. Kopell, D. Ruelle, Bounds on complexity in reaction-diffusion systems, Preprint IHES p/ 42, 1984. Zbl0596.35065MR821442
  35. 35 O.A. Ladyzhenskaya, On a dynamical system generated by Navier-Stokes equations, Zap.Nauch.Sem. LOMI, 27, 1972, 91-115 (J. Soviet Math.3, 1975, 455-479). Zbl0327.35064MR328378
  36. 36 -,,-, On the finiteness of the dimension of bounded invariant sets for the Navier-Stokes equations and other related dissipative systems, Zap. Nauch. Sem. LOMI, 115, 1982, 137-155. Zbl0535.76033MR660078
  37. 37 A. Lafon, Borne sur la dimension de Hausdorff de l'attracteur pour les équations de Navier-Stokes à deux dimensions, C. R. Acad. Ac. Paris, 298, 1984, 453-456. Zbl0575.35072MR750744
  38. 38 F. Ledrappier, Some relations between dimension and Lyapunov exponents, Comm.Math.Phys.81, 1981, 229-238. Zbl0486.58021MR632758
  39. 39. E.H. Lieb, On characteristic exponents in turbulence, Comm.Math.Phys.92, 1984, 473-480. Zbl0598.76054MR736404
  40. 40 J. Mallet-Paret, Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J.Diff. Eq.22, 1976, 331-348. Zbl0354.34072MR423399
  41. 41 R. Mañé, On the dimension of the compact invariant sets of certain non-linear maps; Dynamical Systems and Turbulence, Warwick1980, ed. by D.A. Rand, L.-S. Young, L.N.Math.898, Springer1981, 230-242. Zbl0544.58014MR654892
  42. 42 B. Nicolaenko, B. Scheurer, R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors, Physica16D, 155-184, 1985. Zbl0592.35013MR796268
  43. 43 D. Ruelle, Differentiable dynamical systems and the problem of turbulence, Bull. AMS, 5, 1981, 29-42. Zbl0474.76052MR614312
  44. 44 D. Ruelle, Large volume limit of the distribution of characteristic exponents in turbulence, Comm. Math. Phys.87, 1982, 287-302. Zbl0546.76083MR684105
  45. 45 D. Ruelle, Characteristic exponents for a viscous fluid subjected to time dependent forces, Comm. Math. Phys.93, 1984, 285-300. Zbl0565.76031MR745685
  46. 46 M. Sermange, R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math.36, 1983, 635-664. Zbl0524.76099MR716200
  47. 47 V.S. Stepanov, Regular attractors of quasilinear hyperbolic systems with dissipation, Vestnik MGU5, 1985, 74-77. Zbl0594.35067MR814280
  48. 48 R. Temam, Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1983. Zbl0833.35110MR764933
  49. 49 R. Temam, Infinite dimensional dynamical systems in fluid mechanics, Proc. AMS Summer Research Institute "Nonlinear Functional Analysis and Applications", Berkeley1983, ed. F. Browder. Zbl0598.35095
  50. 50 R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North Holland, 1984. Zbl0568.35002MR769654

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.