Dispersion for non-linear relativistic equations. II
Annales scientifiques de l'École Normale Supérieure (1968)
- Volume: 1, Issue: 4, page 459-497
- ISSN: 0012-9593
Access Full Article
topHow to cite
topSegal, Irving. "Dispersion for non-linear relativistic equations. II." Annales scientifiques de l'École Normale Supérieure 1.4 (1968): 459-497. <http://eudml.org/doc/81839>.
@article{Segal1968,
author = {Segal, Irving},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {partial differential equations},
language = {eng},
number = {4},
pages = {459-497},
publisher = {Elsevier},
title = {Dispersion for non-linear relativistic equations. II},
url = {http://eudml.org/doc/81839},
volume = {1},
year = {1968},
}
TY - JOUR
AU - Segal, Irving
TI - Dispersion for non-linear relativistic equations. II
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1968
PB - Elsevier
VL - 1
IS - 4
SP - 459
EP - 497
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/81839
ER -
References
top- [1] A. R. BRODSKY, Asymptotic decay of solutions to the relativistic wave equation..., Doctoral dissertation, Department of Mathematics, M.I.T., Cambridge, Mass., 1964.
- [2] A. P. CALDERON, Lebesgue spaces of differentiable functions and distributions (Proc. Symp. Pure Math., vol. IV, 1961, p. 33-49 ; Amer. Math. Soc., Providence). Zbl0195.41103MR26 #603
- [3] W. LITTMAN, The wave operator and Lp norms (J. Math. Mech., vol. 12, 1963, p. 55-63). Zbl0127.31705MR26 #4043
- [4] S. NELSON, Asymptotic behavior of certain fundamental solutions to the Klein-Gordon equation, Doctoral dissertation, Department of Mathematics, M.I.T., Cambridge, Mass., 1966.
- [5] I. SEGAL, Quantization and dispersion for non-linear relativistic equations, p. 79-108 ; Proc. Conf. on Math. Theory of El. Particles, publ. M.I.T. Press, Cambridge, Mass., 1966. MR36 #542
- [6] I. SEGAL, Differential operators in the manifold of solutions of a non-linear differential equation (J. Math. pures et appl., t. 44, 1965, p. 71-132). Zbl0139.09202MR33 #594
- [7] I. SEGAL, The global Cauchy problem for a relativistic scalar field with power interaction (Bull. Soc. Math. Fr., t. 91, 1963, p. 129-135). Zbl0178.45403MR27 #3928
- [8] I. SEGAL, Non-linear semi-groups (Ann. Math., vol. 78, 1963, p. 339-364). Zbl0204.16004MR27 #2879
- [9] W. A. STRAUSS, La décroissance asymptotique des solutions des équations d'onde non linéaires (C. R. Acad. Sc., t. 256, 1963, p. 2749-2750) ; Les opérateurs d'onde pour les équations d'onde non linéaires indépendantes du temps (Ibid., t. 256, 1963, p. 5045-5046). Zbl0115.08401
- [10] W. A. STRAUSS, To appear in J. Functional Analysis.
- [11] C. N. YANG and R. C. MILLS, Phys. Rev., vol. 96, 1954, p. 191. MR16,432j
Citations in EuDML Documents
top- John M. Chadam, Asymptotics for , II. Scattering theory
- John M. Chadam, Asymptotics for I. Global existence and decay
- Otto Liess, Global existence for the nonlinear equations of crystal optics
- Alain Bachelot, Convergence dans de la solution de l’équation de Klein-Gordon vers celle de l’équation des ondes
- Jean Ginibre, Théorie de la diffusion pour des équations semi linéaires
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.