Dispersion for non-linear relativistic equations. II

Irving Segal

Annales scientifiques de l'École Normale Supérieure (1968)

  • Volume: 1, Issue: 4, page 459-497
  • ISSN: 0012-9593

How to cite

top

Segal, Irving. "Dispersion for non-linear relativistic equations. II." Annales scientifiques de l'École Normale Supérieure 1.4 (1968): 459-497. <http://eudml.org/doc/81839>.

@article{Segal1968,
author = {Segal, Irving},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {partial differential equations},
language = {eng},
number = {4},
pages = {459-497},
publisher = {Elsevier},
title = {Dispersion for non-linear relativistic equations. II},
url = {http://eudml.org/doc/81839},
volume = {1},
year = {1968},
}

TY - JOUR
AU - Segal, Irving
TI - Dispersion for non-linear relativistic equations. II
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1968
PB - Elsevier
VL - 1
IS - 4
SP - 459
EP - 497
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/81839
ER -

References

top
  1. [1] A. R. BRODSKY, Asymptotic decay of solutions to the relativistic wave equation..., Doctoral dissertation, Department of Mathematics, M.I.T., Cambridge, Mass., 1964. 
  2. [2] A. P. CALDERON, Lebesgue spaces of differentiable functions and distributions (Proc. Symp. Pure Math., vol. IV, 1961, p. 33-49 ; Amer. Math. Soc., Providence). Zbl0195.41103MR26 #603
  3. [3] W. LITTMAN, The wave operator and Lp norms (J. Math. Mech., vol. 12, 1963, p. 55-63). Zbl0127.31705MR26 #4043
  4. [4] S. NELSON, Asymptotic behavior of certain fundamental solutions to the Klein-Gordon equation, Doctoral dissertation, Department of Mathematics, M.I.T., Cambridge, Mass., 1966. 
  5. [5] I. SEGAL, Quantization and dispersion for non-linear relativistic equations, p. 79-108 ; Proc. Conf. on Math. Theory of El. Particles, publ. M.I.T. Press, Cambridge, Mass., 1966. MR36 #542
  6. [6] I. SEGAL, Differential operators in the manifold of solutions of a non-linear differential equation (J. Math. pures et appl., t. 44, 1965, p. 71-132). Zbl0139.09202MR33 #594
  7. [7] I. SEGAL, The global Cauchy problem for a relativistic scalar field with power interaction (Bull. Soc. Math. Fr., t. 91, 1963, p. 129-135). Zbl0178.45403MR27 #3928
  8. [8] I. SEGAL, Non-linear semi-groups (Ann. Math., vol. 78, 1963, p. 339-364). Zbl0204.16004MR27 #2879
  9. [9] W. A. STRAUSS, La décroissance asymptotique des solutions des équations d'onde non linéaires (C. R. Acad. Sc., t. 256, 1963, p. 2749-2750) ; Les opérateurs d'onde pour les équations d'onde non linéaires indépendantes du temps (Ibid., t. 256, 1963, p. 5045-5046). Zbl0115.08401
  10. [10] W. A. STRAUSS, To appear in J. Functional Analysis. 
  11. [11] C. N. YANG and R. C. MILLS, Phys. Rev., vol. 96, 1954, p. 191. MR16,432j

Citations in EuDML Documents

top
  1. John M. Chadam, Asymptotics for u = m 2 u + G ( t , x , u , u x , u t ) , , II. Scattering theory
  2. John M. Chadam, Asymptotics for u = m 2 u + G ( x , t , u , u x , u t ) , I. Global existence and decay
  3. Otto Liess, Global existence for the nonlinear equations of crystal optics
  4. Alain Bachelot, Convergence dans L p ( R n + 1 ) de la solution de l’équation de Klein-Gordon vers celle de l’équation des ondes
  5. Jean Ginibre, Théorie de la diffusion pour des équations semi linéaires

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.