Asymptotics for u = m 2 u + G ( x , t , u , u x , u t ) , I. Global existence and decay

John M. Chadam

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1972)

  • Volume: 26, Issue: 1, page 33-65
  • ISSN: 0391-173X

How to cite

top

Chadam, John M.. "Asymptotics for $\square \, u = m^2 u + G (x, t, u, u_x, u_t),$ I. Global existence and decay." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.1 (1972): 33-65. <http://eudml.org/doc/83591>.

@article{Chadam1972,
author = {Chadam, John M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {33-65},
publisher = {Scuola normale superiore},
title = {Asymptotics for $\square \, u = m^2 u + G (x, t, u, u_x, u_t),$ I. Global existence and decay},
url = {http://eudml.org/doc/83591},
volume = {26},
year = {1972},
}

TY - JOUR
AU - Chadam, John M.
TI - Asymptotics for $\square \, u = m^2 u + G (x, t, u, u_x, u_t),$ I. Global existence and decay
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1972
PB - Scuola normale superiore
VL - 26
IS - 1
SP - 33
EP - 65
LA - eng
UR - http://eudml.org/doc/83591
ER -

References

top
  1. [1] I.E. Segal, Dispersion for Non-linear Relativistic Equations, II, Ann. Scient. Ec. Norm. Sup., ser 4, 1, 459-497, (1968). Zbl0179.42302MR243788
  2. [2] W.A. Strauss, Decay and Asymptotics for □ u = F(u), J. Functl. Anal., 2, 409-457, (1968). Zbl0182.13602
  3. [3] I.E. Segal, Non-linear Semi-groups, Ann. Math., 78, 339-364, (1963). Zbl0204.16004MR152908
  4. [4] S. Nelson, On Some Solutions to the Klein-Gordon Equation Related to an Integral of Sonine, to appear. Zbl0214.10102MR415049
  5. [5] A.P. Calderón, Lebesgue Spaces of Differentiable Functions and Distributions, 33-49, Proc. Symp. Pure Math. IV, Amer. Math. Soc.Providence, 1961. Zbl0195.41103MR143037
  6. [6] I.E. Segal, Quantization and Dispersion for Non-linear Relativistic Equations, 79-108, Proc. Conf. on Math. Theory of Elem. Patticles, M. I. T., Cambridge, 1966. 
  7. [7] R.A. Goldstein, Equality of Minimal and Maximal Extension of Partial Differential Operators iu Lp (Rn), Proc. Amer. Math. Soc., 17, 1031-1033, (1966). Zbl0156.32901MR197954
  8. [8] L. Nirenberg, On Elliptic Partial Differential Equations, Ann. Scoula Norm. Sup. Pisa, 13, 115-162, (1959). Zbl0088.07601MR109940
  9. [9] N. Shenk AND D. Thoe, Outgoing Solutions of (- Δ + q — k2) u = f in an Exterior Domain, J. Math. Anal. Appl., 31, 81-116, (1970). Zbl0201.13202
  10. [10] J.M. Chadam, The Asymptotic Behavior of the Klein-Gordon Equation with External Potential, I, J. Math. Anal. Appl., 31, 334-348, (1970) and II, Pac. J. Math., 31, 19-31, (1969). Zbl0212.44202MR262882

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.