Free differentiable S 1 and S 3 actions on homotopy spheres

Dan Burghelea

Annales scientifiques de l'École Normale Supérieure (1972)

  • Volume: 5, Issue: 2, page 183-215
  • ISSN: 0012-9593

How to cite

top

Burghelea, Dan. "Free differentiable $S^1$ and $S^3$ actions on homotopy spheres." Annales scientifiques de l'École Normale Supérieure 5.2 (1972): 183-215. <http://eudml.org/doc/81893>.

@article{Burghelea1972,
author = {Burghelea, Dan},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {2},
pages = {183-215},
publisher = {Elsevier},
title = {Free differentiable $S^1$ and $S^3$ actions on homotopy spheres},
url = {http://eudml.org/doc/81893},
volume = {5},
year = {1972},
}

TY - JOUR
AU - Burghelea, Dan
TI - Free differentiable $S^1$ and $S^3$ actions on homotopy spheres
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1972
PB - Elsevier
VL - 5
IS - 2
SP - 183
EP - 215
LA - eng
UR - http://eudml.org/doc/81893
ER -

References

top
  1. [1] M. ATIYAH and F. HIRZEBRUCH, Spin-Manifolds and Group Actions (Essays on Topology and Related Topics (dédié à G. DE RHAM), Springer-Verlag, 1970). Zbl0193.52401MR43 #4064
  2. [2] A. BOREL and coll., Seminar on Transformation Groups (Annals of Math. Studies). Zbl0091.37202
  3. [3] W. BROWDER, Surgery and the Theory of Differentiable Transformation Groups, (Proceedings of the Conference on Transformation Groups, Springer-Verlag, 1968, p. 1-46). Zbl0177.51902MR41 #6242
  4. [4] G. BRUMFIEL, Differentiable S'-action on Homotopy Spheres (mineo-M. I. T.). 
  5. [5] H. CARTAN, Suite exacte de Gysin, Séminaire 1958/1959, E. N. S., Exposé 3. 
  6. [6] R. C. KIRBY and L. C. SIEBENMANN, On the Triangulability of Manifolds and the Hauptvermutung (B. A. M. S., vol. 75, 1969, p. 748-749). Zbl0189.54701MR39 #3500
  7. [7] W. C. HSIANG, A Note on Free Differentiable Actions of S¹ and S³ on Homotopy Spheres (Ann. of Math., vol. 83, p. 266-272). Zbl0137.17802MR33 #731
  8. [8] J. MILNOR, Lectures on Characteristic Classes (mimeo), Princeton, 1968. 
  9. [9] D. MONTGOMERY and C. T. YANG, Differentiable Actions on Homotopy Seven-Spheres II. (Proceedings of the Conference on Transformation Groups, Springer-Verlag, 1968, p. 125-134). Zbl0177.51903MR39 #6353
  10. [10] Proceedings of the Conference on Transformation Groups “Problems”, p. 235-256, Springer-Verlag, 1968. 
  11. [11] C. ROURKE and D. SULLIVAN, On the Kervaire Obstruction, (mimeo) Warwick Univ., 1969. 
  12. [12] B. SANDERSON, Immersions and Embeddings of Projective Spaces [Proc. London Math. Soc., (3), vol. 14, 1964, p. 137-153]. Zbl0122.41703MR29 #2814
  13. [13] D. SULLIVAN, Triangulating Homotopy Equivalences (Thesis, Princeton University). 
  14. [14] D. SULLIVAN, Seminar in Geometric Topology, I. A. S., 1967. 
  15. [15] C. T. YANG, The Triangulability of the Orbit Space of a Differentiable Transformation Group (B. A. M. S., vol. 69, 1963, p. 408). Zbl0114.14502MR26 #3813
  16. [16] J. BOARDMAN and R. VOGT, Homotopy-everything H-spaces (B. A. M. S., vol. 74, 1968, p. 1117-1122). Zbl0165.26204MR38 #5215
  17. [17] M. KERVAIRE and J. MILNOR, Groups of Homotopy Spheres I, (Annals of Math., 1963, p. 504-537). Zbl0115.40505MR26 #5584

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.