The center of the universal enveloping algebra of a Lie algebra in characteristic p

F. D. Veldkamp

Annales scientifiques de l'École Normale Supérieure (1972)

  • Volume: 5, Issue: 2, page 217-240
  • ISSN: 0012-9593

How to cite

top

Veldkamp, F. D.. "The center of the universal enveloping algebra of a Lie algebra in characteristic $p$." Annales scientifiques de l'École Normale Supérieure 5.2 (1972): 217-240. <http://eudml.org/doc/81894>.

@article{Veldkamp1972,
author = {Veldkamp, F. D.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {2},
pages = {217-240},
publisher = {Elsevier},
title = {The center of the universal enveloping algebra of a Lie algebra in characteristic $p$},
url = {http://eudml.org/doc/81894},
volume = {5},
year = {1972},
}

TY - JOUR
AU - Veldkamp, F. D.
TI - The center of the universal enveloping algebra of a Lie algebra in characteristic $p$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1972
PB - Elsevier
VL - 5
IS - 2
SP - 217
EP - 240
LA - eng
UR - http://eudml.org/doc/81894
ER -

References

top
  1. [1] A. BOREL, Linear algebraic groups, Benjamin, New York, 1969. Zbl0186.33201MR40 #4273
  2. [2] A. BOREL and T. A. SPRINGER, Rationality properties of linear algebraic groups, II [Tôhoku Math. J., (2), vol. 20, 1968, p. 443-497]. Zbl0211.53302MR39 #5576
  3. [3] A. BOREL and J. TITS, Groupes réductifs (Publ. Math. I. H. E. S., vol. 27, 1965, p. 55-150). Zbl0145.17402MR34 #7527
  4. [4] N. BOURBAKI, Groupes et algèbres de Lie, chap. 4, 5, 6, Hermann, Paris, 1968. 
  5. [5] C. CHEVALLEY, Certains schémas de groupes semi-simples (Séminaire Bourbaki, 1960-1961, exposé 219). Zbl0125.01705
  6. [6] H. FREUDENTHAL and H. DE VRIES, Linear Lie groups, Academic Press, New York, 1969. Zbl0377.22001MR41 #5546
  7. [7] R. GODEMENT, Quelques résultats nouveaux de Kostant sur les groupes semi-simples (Séminaire Bourbaki, 1963-1964, exposé 260). Zbl0135.07001
  8. [8] A. GROTHENDIECK et J. DIEUDONNÉ, Éléments de géométrie algébrique, IV (seconde partie) (Publ. Math. I. H. E. S., vol. 24, 1965). Zbl0135.39701
  9. [9] J. E. HUMPHREYS, Modular representations of classical Lie algebras and semisimple groups (J. Algebra, vol. 19, 1971, p. 51-79). Zbl0219.17003MR44 #271
  10. [10] N. JACOBSON, Lie algebras, Interscience, New York, 1962. Zbl0121.27504
  11. [11] N. JACOBSON, Lectures in abstract algebra, III, Van Nostrand, Princeton, 1964. Zbl0124.27002
  12. [12] B. KOSTANT, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group (Amer. J. Math., vol. 81, 1959, p. 973-1032). Zbl0099.25603MR22 #5693
  13. [13] B. KOSTANT, Lie group representations on polynomial rings (Ibid., vol. 85, 1963, p. 327-404). Zbl0124.26802MR28 #1252
  14. [14] D. MUMFORD, Introduction to algebraic geometry (Preliminary version), Dept. Math., Harvard University. 
  15. [15] A. N. RUDAKOV, On representations of classical semisimple Lie algebras of characteristic p (Math. of the U. S. S. R.-Izvestija, vol. 4, 1970, p. 741-750). Zbl0242.17005MR42 #1872
  16. [16] Séminaire «Sophus Lie», Théorie des algèbres de Lie. Topologie des groupes de Lie, Paris, 1954-1955. 
  17. [17] T. A. SPRINGER, Some arithmetical results on semi-simple Lie algebras (Publ. Math. I. H. E. S., vol. 30, 1966, p. 115-141). Zbl0156.27002MR34 #5993
  18. [18] T. A. SPRINGER and R. STEINBERG, Conjugacy classes. In: A BOREL et al., Seminar on algebraic groups and related finite groups (Lecture Notes in Math., vol. 131, Springer Verlag, Berlin, etc. 1970). Zbl0249.20024MR42 #3091
  19. [19] R. STEINBERG, Prime power representations of finite linear groups, II (Can. J. Math., vol. 9, 1957, p. 347-351). Zbl0079.25601MR19,387d
  20. [20] R. STEINBERG, Representations of algebraic groups (Nagoya Math. J., vol. 22, 1963, p. 33-56). Zbl0271.20019MR27 #5870
  21. [21] R. STEINBERG, Regular elements of semisimple algebraic groups (Publ. Math. I. H. E. S., vol. 25, 1965, p. 49-80). Zbl0136.30002MR31 #4788
  22. [22] R. STEINBERG, Lectures on Chevalley groups (Mimeographed notes, Yale University, 1967). 
  23. [23] D.-N. VERMA, Structure of certain induced representations of complex semisimple Lie algebras (Dissertation, Yale University, 1966). 
  24. [24] H. ZASSENHAUS, The representations of Lie algebras of prime characteristic (Proc. Glasgow Math. Ass., vol. 2, 1954, p. 1-36). Zbl0059.03001MR16,108c

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.