Representations of semisimple groups associated to nilpotent orbits
Linda Preiss Rothschild; Joseph A. Wolf
Annales scientifiques de l'École Normale Supérieure (1974)
- Volume: 7, Issue: 2, page 155-173
- ISSN: 0012-9593
Access Full Article
topHow to cite
topRothschild, Linda Preiss, and Wolf, Joseph A.. "Representations of semisimple groups associated to nilpotent orbits." Annales scientifiques de l'École Normale Supérieure 7.2 (1974): 155-173. <http://eudml.org/doc/81933>.
@article{Rothschild1974,
author = {Rothschild, Linda Preiss, Wolf, Joseph A.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {2},
pages = {155-173},
publisher = {Elsevier},
title = {Representations of semisimple groups associated to nilpotent orbits},
url = {http://eudml.org/doc/81933},
volume = {7},
year = {1974},
}
TY - JOUR
AU - Rothschild, Linda Preiss
AU - Wolf, Joseph A.
TI - Representations of semisimple groups associated to nilpotent orbits
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1974
PB - Elsevier
VL - 7
IS - 2
SP - 155
EP - 173
LA - eng
UR - http://eudml.org/doc/81933
ER -
References
top- [1] L. AUSLANDER and B. KOSTANT, Polarization and Unitary Representations of Solvable Lie Groups (Inventiones Math., 14, 1971, p. 255-354). Zbl0233.22005MR45 #2092
- [2] R. J. BLATTNER, On induced representations, II : Infinitesimal induction (Amer. J. Math., vol. 83, 1961, p. 499-512). Zbl0139.07702MR26 #2885
- [3] É. CARTAN, La géométrie des groupes simples (Annali di Mat., vol. 4, 1927, p. 209-256). Zbl53.0392.03JFM53.0392.03
- [4] N. CONZE and M. DUFLO, Sur l'algèbre enveloppante d'une algèbre de Lie résoluble (Bull. Soc. Math. Fr. t. 94, 1970, p. 201-208). Zbl0202.04101MR44 #270
- [5] M. DUFLO, Caractères des groupes et des algèbres de Lie résolubles (Ann. scient. Éc. Norm. Sup., t. 3, 1970, p. 23-74). Zbl0223.22016MR42 #4672
- [6] M. DUFLO, Sur les extensions des représentations irréductibles des groupes de Lie nilpotents (Ann. scient. Éc. Norm. Sup., t. 5, 1972, p. 71-120). Zbl0241.22030MR46 #1966
- [7] G. B. ELKINGTON, Centralizers of unipotent elements in semisimple algebraic groups (J. Algebra, vol. 23, 1972, p. 137-163). Zbl0247.20053MR46 #7342
- [8] HARISH-CHANDRA, On some applications of the universal enveloping algebra of a semisimple Lie algebra (Trans. Amer. Math. Soc., vol. 70, 1951, p. 28-96). Zbl0042.12701MR13,428c
- [9] HARISH-CHANDRA, Harmonic analysis on semisimple Lie groups (Bull. Amer. Math. Soc., vol. 76, 1970, p. 529-551). Zbl0212.15101MR41 #1933
- [10] HARISH-CHANDRA, On the theory of the Eisenstein integral, Springer-Verlag (Lecture Notes in Math., vol. 266, 1971, p. 123-149). Zbl0245.22019MR53 #3200
- [11] A. A. KIRILLOV, Unitary representations of nilpotent Lie groups (Uspeki Mat. Nauk., 17, 1962, p. 57-110). Zbl0106.25001MR25 #5396
- [12] B. KOSTANT, The principal three dimensional subgroup and the Betti numbers of a complex simple Lie group (Amer. J. Math., vol. 81, 1959, p. 973-1032). Zbl0099.25603MR22 #5693
- [13] B. KOSTANT, Lie group representations on polynomial rings (Amer. J. Math., vol. 85, 1963, p. 327-404). Zbl0124.26802MR28 #1252
- [14] B. KOSTANT, Quantization and unitary representations, Springer-Verlag (Lecture Notes in Math., vol. 170, 1970, p. 87-207). Zbl0223.53028MR45 #3638
- [15] B. KOSTANT and S. RALLIS, Orbits and representations associated with symmetric spaces (Amer. J. Math., vol. 93, 1971, p. 753-809). Zbl0224.22013MR47 #399
- [16] H. MATSUMOTO, Quelques remarques sur les groupes de Lie algébriques réels (J. Math. Soc. Japan, vol. 16, 1964, p. 419-446). Zbl0133.28706MR32 #1292
- [17] C. C. MOORE, Representations of solvable and nilpotent groups and harmonic analysis on nil- and solvmanifolds (Amer. Math. Soc. Proceedings of Symposia in Pure Math., vol. 26, 1973, p. 3-44). Zbl0292.22015MR52 #5871
- [18] H. OZEKI and M. WAKIMOTO, On polarizations of certain homogeneous spaces (Hiroshima Math. J., vol. 2, 1972, p. 445-482). Zbl0267.22011MR49 #5236a
- [19] L. PUKÁNSZKY, On the unitary representations of exponential groups (J. Functional Analysis, vol. 2, 1968, p. 73-113). Zbl0172.18502MR37 #4205
- [20] L. PUKÁNSKYCharacters of algebraic solvable groups (J. Functional Analysis, vol. 3, 1969, p. 435-494). Zbl0186.20004MR40 #1539
- [21] S. RALLIS, Lie group representations associated to symmetric spaces, thesis, M. I. T., 1968.
- [22] M. WAKIMOTO, Polarizations of certain homogeneous spaces and most continuous principal series (Hiroshima Math. J., vol. 2, 1972, p. 483-533). Zbl0267.22012MR49 #5236b
- [23] G. WARNER, Harmonic Analysis on Semisimple Lie Groups I, II (Grundlehren Math. Wissensch., vol. 188, and 189, Springer-Verlag, 1972). Zbl0265.22020
- [24] J. A. WOLF, The action of a real semisimple group a on complex flag manifold, I : Orbit structure and holomorphic arc components (Bull. Amer. Math. Soc., vol. 75, 1969, p. 1121-1237). Zbl0183.50901MR40 #4477
- [25] J. A. WOLF, The action of a real semisimple group on a complex flag manifold, II : Unitary representations on partially holomorphic cohomology spaces [Memoirs Amer. Math. Soc., Number 138, 1974]. Zbl0288.22022MR52 #14160
- [26] J. A. WOLF, Partially harmonic spinors and representations of reductive Lie groups [J. Funct. Anal., vol. 15, 1974, p. 117-154]. Zbl0279.22009MR52 #14161
- [27] P. BERNAT, N. CONZE, M. DUFLO, M. LÉVY-NAHAS, M. RAIS, P. RENOUARD et M. VERGNE, Représentations des Groupes de Lie Résolubles, Dunod, Paris, 1972. Zbl0248.22012MR56 #3183
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.