Cobordisme d'immersions

Pierre Vogel

Annales scientifiques de l'École Normale Supérieure (1974)

  • Volume: 7, Issue: 3, page 317-357
  • ISSN: 0012-9593

How to cite

top

Vogel, Pierre. "Cobordisme d'immersions." Annales scientifiques de l'École Normale Supérieure 7.3 (1974): 317-357. <http://eudml.org/doc/81941>.

@article{Vogel1974,
author = {Vogel, Pierre},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {3},
pages = {317-357},
publisher = {Elsevier},
title = {Cobordisme d'immersions},
url = {http://eudml.org/doc/81941},
volume = {7},
year = {1974},
}

TY - JOUR
AU - Vogel, Pierre
TI - Cobordisme d'immersions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1974
PB - Elsevier
VL - 7
IS - 3
SP - 317
EP - 357
LA - fre
UR - http://eudml.org/doc/81941
ER -

References

top
  1. [1] J. ADEM, The relations on Steenrod powers of cohomology classes. Algebraic Geometry and Topology, Princeton University Press, 1956, p. 191-238. Zbl0199.26104MR19,50c
  2. [2] M. F. ATIYAH, Immersions and embeddings of manifolds (Topology, vol. 1, 1961, p. 125-132). Zbl0109.41101MR26 #3080
  3. [3] H. CARTAN, Espaces avec groupes d'opérateurs (Séminaire de topologie algébrique de l'École Normale Sup., Paris, 1951). 
  4. [4] H. CARTAN et S. EILENBERG, Homological algebra, Princeton University Press, 1956. Zbl0075.24305MR17,1040e
  5. [5] A. DOLD, Homology of symmetric products and other functors of complexes (Ann. of Math., vol. 68, 1958, p. 54-80). Zbl0082.37701MR20 #3537
  6. [6] A. DOLD, Sur les opérations de Steenrod (Colloque international du C. N. R. S., Topologie algébrique et géométrie différentielle, Lille, 1959). Zbl0196.55703MR22 #7116
  7. [7] A. DOLD, Relations between ordinary and extraordinary cohomology (Notes, Aarhus Colloquium on Algebraic Topology, Aarhus, 1962). Zbl0145.20104
  8. [8] S. EILENBERG et S. MACLANE, Acyclic models (Amer. J. Math., vol. 15, 1953, p. 189-199). Zbl0050.17205MR14,670b
  9. [9] S. EILENBERG et N. E. STEENROD, Foundations of Algebraic Topology, Princeton Math. ser., n° 15. Zbl0047.41402
  10. [10] S. EILENBERG et J. ZILBER, On products on complexes (Amer. J. Math., vol. 15, 1953, p. 200-204). Zbl0050.17301MR14,670c
  11. [11] A. GRAMAIN, Sur les immersions de codimension 1 qui sont des bords (Thèse, Faculté des Sciences d'Orsay, 1969). Zbl0219.57020
  12. [12] A. HAEFLIGER, Plongements différentiables de variétés dans variétés (Comm. Math. Helv., vol. 36, 1961, p. 47-82). Zbl0102.38603MR26 #3069
  13. [13] M. HIRSCH, Immersions of manifolds (Trans. Amer. Math. Soc., vol. 93, 1959, p. 242-276). Zbl0113.17202MR22 #9980
  14. [14] W. C. HSIANG et C. T. C. WALL, Orientability of manifolds for generalized homology theories (Trans. Amer. Math. Soc., vol. 118, 1965, p. 352-359). Zbl0142.40602MR31 #1670
  15. [15] A. LIULEVICIUS, A theorem in homological algebra and stable homotopy of projective spaces (Trans. Amer. Math. Soc., vol. 109, 1963, p. 540-552). Zbl0134.19202MR27 #6270
  16. [16] J. W. MILNOR, On the immersion of n-manifolds in (n + 1)-space (Comm. Math. Helv., vol. 30, 1956, p. 275-284). Zbl0070.40202MR18,60b
  17. [17] J. W. MILNOR, The Steenrod algebra and its dual (Ann. of Math., vol. 67, 1958, p. 150-171). Zbl0080.38003MR20 #6092
  18. [18] J. W. MILNOR, On spaces having the homotopy type of a CW-complex (Trans. Amer. Math. Soc., vol. 90, 1959, p. 272-280). Zbl0084.39002MR20 #6700
  19. [19] M. NAKAOKA, Cohomology mod p of symmetric products of spheres (J. Inst. Polyt., Osaka City University, vol. 10, 1959, p. 67-89). Zbl0092.15601MR22 #12519c
  20. [20] M. NAKAOKA, Homology of the infinite symmetric group (Ann. of Math., vol. 73, 1961, p. 229-257). Zbl0099.25301MR24 #A1721
  21. [21] V. POENARU, Sur la théorie des immersions (Topology, vol. 1, 1962, p. 81-100). Zbl0105.17202MR27 #2992
  22. [22] L. SIEBENMANN, Le fibré tangent, fascicule II, Centre de Mathématiques de l'École Polytechnique, Paris, 1969. Zbl0228.57010
  23. [23] S. SMALE, The classification of immersions of spheres in euclidian spaces (Ann. of Math., vol. 69, 1959, p. 327-344). Zbl0089.18201MR21 #3862
  24. [24] E. H. SPANIER, Algebraic topology, Mc Graw-Hill Book Company, New York, 1966. Zbl0145.43303MR35 #1007
  25. [25] N. E. STEENROD, Homology groups of symmetric groups and reduced power operation. Cyclic reduced powers of cohomology classes (Proc. Nat. Acad. Sci., U. S. A., vol. 39, 1953, p. 213-223). Zbl0050.39401MR14,1005d
  26. [26] N. E. STEENROD, Cohomology operations derived from the symmetric group (Comm. Math. Helv., vol. 31, 1957, p. 195-218). Zbl0077.16701MR19,1069i
  27. [27] N. E. STEENROD, Cohomology operations and obstructions to extending continuous functions (Colloquium lecture notes, Princeton University, 1957). 
  28. [28] N. E. STEENROD et D. B. A. EPSTEIN, Cohomology operations, Princeton University Press, 1962. Zbl0102.38104MR26 #3056
  29. [29] R. E. STONG, Cobordism of maps (Topology, vol. 5, 1966, p. 245-258). Zbl0144.22702MR33 #4945
  30. [30] R. E. STONG, Notes on cobordism theory, Princeton University Press, 1968. Zbl0181.26604MR40 #2108
  31. [31] R. THOM, Quelques propriétés globales des variétés différentiables (Comm. Math. Helv., vol. 28, 1954, p. 17-86). Zbl0057.15502MR15,890a
  32. [32] R. THOM, La classification des immersions (Séminaire Bourbaki, n° 157, décembre 1957). Zbl0116.40504MR21 #4429
  33. [33] R. WELLS, Cobordism groups of immersions (Topology, vol. 5, 1966, p. 281-294). Zbl0145.20202MR33 #4946
  34. [34] G. W. WHITEHEAD, Generalized homology theories (Trans. Amer. Math. Soc., vol. 102, 1962, p. 227-283). Zbl0124.38302MR25 #573

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.