Cobordisme d'immersions

Pierre Vogel

Annales scientifiques de l'École Normale Supérieure (1974)

  • Volume: 7, Issue: 3, page 317-357
  • ISSN: 0012-9593

How to cite

top

Vogel, Pierre. "Cobordisme d'immersions." Annales scientifiques de l'École Normale Supérieure 7.3 (1974): 317-357. <http://eudml.org/doc/81941>.

@article{Vogel1974,
author = {Vogel, Pierre},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {3},
pages = {317-357},
publisher = {Elsevier},
title = {Cobordisme d'immersions},
url = {http://eudml.org/doc/81941},
volume = {7},
year = {1974},
}

TY - JOUR
AU - Vogel, Pierre
TI - Cobordisme d'immersions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1974
PB - Elsevier
VL - 7
IS - 3
SP - 317
EP - 357
LA - fre
UR - http://eudml.org/doc/81941
ER -

References

top
  1. [1] J. ADEM, The relations on Steenrod powers of cohomology classes. Algebraic Geometry and Topology, Princeton University Press, 1956, p. 191-238. Zbl0199.26104MR19,50c
  2. [2] M. F. ATIYAH, Immersions and embeddings of manifolds (Topology, vol. 1, 1961, p. 125-132). Zbl0109.41101MR26 #3080
  3. [3] H. CARTAN, Espaces avec groupes d'opérateurs (Séminaire de topologie algébrique de l'École Normale Sup., Paris, 1951). 
  4. [4] H. CARTAN et S. EILENBERG, Homological algebra, Princeton University Press, 1956. Zbl0075.24305MR17,1040e
  5. [5] A. DOLD, Homology of symmetric products and other functors of complexes (Ann. of Math., vol. 68, 1958, p. 54-80). Zbl0082.37701MR20 #3537
  6. [6] A. DOLD, Sur les opérations de Steenrod (Colloque international du C. N. R. S., Topologie algébrique et géométrie différentielle, Lille, 1959). Zbl0196.55703MR22 #7116
  7. [7] A. DOLD, Relations between ordinary and extraordinary cohomology (Notes, Aarhus Colloquium on Algebraic Topology, Aarhus, 1962). Zbl0145.20104
  8. [8] S. EILENBERG et S. MACLANE, Acyclic models (Amer. J. Math., vol. 15, 1953, p. 189-199). Zbl0050.17205MR14,670b
  9. [9] S. EILENBERG et N. E. STEENROD, Foundations of Algebraic Topology, Princeton Math. ser., n° 15. Zbl0047.41402
  10. [10] S. EILENBERG et J. ZILBER, On products on complexes (Amer. J. Math., vol. 15, 1953, p. 200-204). Zbl0050.17301MR14,670c
  11. [11] A. GRAMAIN, Sur les immersions de codimension 1 qui sont des bords (Thèse, Faculté des Sciences d'Orsay, 1969). Zbl0219.57020
  12. [12] A. HAEFLIGER, Plongements différentiables de variétés dans variétés (Comm. Math. Helv., vol. 36, 1961, p. 47-82). Zbl0102.38603MR26 #3069
  13. [13] M. HIRSCH, Immersions of manifolds (Trans. Amer. Math. Soc., vol. 93, 1959, p. 242-276). Zbl0113.17202MR22 #9980
  14. [14] W. C. HSIANG et C. T. C. WALL, Orientability of manifolds for generalized homology theories (Trans. Amer. Math. Soc., vol. 118, 1965, p. 352-359). Zbl0142.40602MR31 #1670
  15. [15] A. LIULEVICIUS, A theorem in homological algebra and stable homotopy of projective spaces (Trans. Amer. Math. Soc., vol. 109, 1963, p. 540-552). Zbl0134.19202MR27 #6270
  16. [16] J. W. MILNOR, On the immersion of n-manifolds in (n + 1)-space (Comm. Math. Helv., vol. 30, 1956, p. 275-284). Zbl0070.40202MR18,60b
  17. [17] J. W. MILNOR, The Steenrod algebra and its dual (Ann. of Math., vol. 67, 1958, p. 150-171). Zbl0080.38003MR20 #6092
  18. [18] J. W. MILNOR, On spaces having the homotopy type of a CW-complex (Trans. Amer. Math. Soc., vol. 90, 1959, p. 272-280). Zbl0084.39002MR20 #6700
  19. [19] M. NAKAOKA, Cohomology mod p of symmetric products of spheres (J. Inst. Polyt., Osaka City University, vol. 10, 1959, p. 67-89). Zbl0092.15601MR22 #12519c
  20. [20] M. NAKAOKA, Homology of the infinite symmetric group (Ann. of Math., vol. 73, 1961, p. 229-257). Zbl0099.25301MR24 #A1721
  21. [21] V. POENARU, Sur la théorie des immersions (Topology, vol. 1, 1962, p. 81-100). Zbl0105.17202MR27 #2992
  22. [22] L. SIEBENMANN, Le fibré tangent, fascicule II, Centre de Mathématiques de l'École Polytechnique, Paris, 1969. Zbl0228.57010
  23. [23] S. SMALE, The classification of immersions of spheres in euclidian spaces (Ann. of Math., vol. 69, 1959, p. 327-344). Zbl0089.18201MR21 #3862
  24. [24] E. H. SPANIER, Algebraic topology, Mc Graw-Hill Book Company, New York, 1966. Zbl0145.43303MR35 #1007
  25. [25] N. E. STEENROD, Homology groups of symmetric groups and reduced power operation. Cyclic reduced powers of cohomology classes (Proc. Nat. Acad. Sci., U. S. A., vol. 39, 1953, p. 213-223). Zbl0050.39401MR14,1005d
  26. [26] N. E. STEENROD, Cohomology operations derived from the symmetric group (Comm. Math. Helv., vol. 31, 1957, p. 195-218). Zbl0077.16701MR19,1069i
  27. [27] N. E. STEENROD, Cohomology operations and obstructions to extending continuous functions (Colloquium lecture notes, Princeton University, 1957). 
  28. [28] N. E. STEENROD et D. B. A. EPSTEIN, Cohomology operations, Princeton University Press, 1962. Zbl0102.38104MR26 #3056
  29. [29] R. E. STONG, Cobordism of maps (Topology, vol. 5, 1966, p. 245-258). Zbl0144.22702MR33 #4945
  30. [30] R. E. STONG, Notes on cobordism theory, Princeton University Press, 1968. Zbl0181.26604MR40 #2108
  31. [31] R. THOM, Quelques propriétés globales des variétés différentiables (Comm. Math. Helv., vol. 28, 1954, p. 17-86). Zbl0057.15502MR15,890a
  32. [32] R. THOM, La classification des immersions (Séminaire Bourbaki, n° 157, décembre 1957). Zbl0116.40504MR21 #4429
  33. [33] R. WELLS, Cobordism groups of immersions (Topology, vol. 5, 1966, p. 281-294). Zbl0145.20202MR33 #4946
  34. [34] G. W. WHITEHEAD, Generalized homology theories (Trans. Amer. Math. Soc., vol. 102, 1962, p. 227-283). Zbl0124.38302MR25 #573

NotesEmbed ?

top

You must be logged in to post comments.