4-Manifolds which embed in IR6 but not in IR5, and Seifert manifolds for fibered knots.
We define an isotopy invariant of embeddings of manifolds into Euclidean space. This invariant together with the α-invariant of Haefliger-Wu is complete in the dimension range where the α-invariant could be incomplete. We also define parametric connected sum of certain embeddings (analogous to surgery). This allows us to obtain new completeness results for the α-invariant and the following estimation of isotopy classes of embeddings. In the piecewise-linear category, for a (3n-2m+2)-connected...
The following problem of Markus and Yamabe is answered affirmatively: Let f be a local diffeomorphism of the euclidean plane whose jacobian matrix has negative trace everywhere. If f(0) = 0, is it true that 0 is a global attractor of the ODE dx/dt = f(x)? An old result of Olech states that this is equivalent to the question if such an f is injective. Here the problem is treated in the latter form by means of an investigation of the behaviour of f near infinity.
On définit le bicomplexe , extension naturelle du complexe engendré par un ensemble simplicial . Ceci permet de définir la notion de ruban de base un cycle de . La somme directe de l’homologie des colonnes de contient, outre l’homologie de , des groupes dans lesquels se trouvent les obstructions à l’existence de rubans. Si est un sous-ensemble simplicial, stable par subdivision, de l’ensemble des simplexes singuliers d’un espace topologique, l’existence de rubans entraîne l’invariance...