Representations of solvable Lie algebras. II. Twisted group rings

J. C. McConnell

Annales scientifiques de l'École Normale Supérieure (1975)

  • Volume: 8, Issue: 2, page 157-178
  • ISSN: 0012-9593

How to cite

top

McConnell, J. C.. "Representations of solvable Lie algebras. II. Twisted group rings." Annales scientifiques de l'École Normale Supérieure 8.2 (1975): 157-178. <http://eudml.org/doc/81952>.

@article{McConnell1975,
author = {McConnell, J. C.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {2},
pages = {157-178},
publisher = {Elsevier},
title = {Representations of solvable Lie algebras. II. Twisted group rings},
url = {http://eudml.org/doc/81952},
volume = {8},
year = {1975},
}

TY - JOUR
AU - McConnell, J. C.
TI - Representations of solvable Lie algebras. II. Twisted group rings
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1975
PB - Elsevier
VL - 8
IS - 2
SP - 157
EP - 178
LA - eng
UR - http://eudml.org/doc/81952
ER -

References

top
  1. [1] H. CARTAN and S. EILENBERG, Homological Algebra, Princeton, 1956. Zbl0075.24305MR17,1040e
  2. [2] G. HOCHSCHILD, Lie Algebras and Differenciations in Rings of Power Series (Amer. J. Math., vol. 72, 1950, pp. 58-80). Zbl0035.01805MR11,317e
  3. [3] E. MATLIS, Modules with Descending Chain Condition (Trans. Amer. Math. Soc., vol. 97, 1960, pp. 495-508). Zbl0094.25203MR30 #122
  4. [4] J. C. MC CONNELL, Representations of Solvable Lie Algebras and the Gelfand-Kirillov Conjecture (To appear in Proc. London Math. Soc., vol. 3, n° 29, 1974, pp. 453-484). Zbl0323.17005MR50 #9997
  5. [5] J. C. MCCONNELL and M. SWEEDLER, Simplicity of Smash Products (Proc. London Math. Soc., vol. 3, n° 23, 1971, pp. 251-266). Zbl0221.16009MR44 #6795
  6. [6] Y. NOUAZÉ and P. GABRIEL, Idéaux premiers de l'algèbre enveloppante d'une algèbre de Lie nilpotente (J. of Algebra, vol. 6, 1967, pp. 77-99). Zbl0159.04101MR34 #5889
  7. [7] D. REES, A Theorem of Homological Algebra (Proc. Cambridge Phil. Soc., vol. 52, 1956, pp. 605-610). Zbl0072.02701MR18,277g
  8. [8] R. RENTSCHLER and P. GABRIEL, Sur la dimension des anneaux et ensembles ordonnés (C. R. Acad. Sc., Paris, t. 265, série A, 1967, p. 712-715). Zbl0155.36201MR37 #243
  9. [9] M. SWEEDLER, Hopf Algebras, W. A. Benjamin, New York, 1969. Zbl0194.32901

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.