Relationen für primäre Homotopieoperationen und eine verallgemeinerte EHP-Sequenz

Hans Joachim Baues

Annales scientifiques de l'École Normale Supérieure (1975)

  • Volume: 8, Issue: 4, page 509-533
  • ISSN: 0012-9593

How to cite

top

Baues, Hans Joachim. "Relationen für primäre Homotopieoperationen und eine verallgemeinerte EHP-Sequenz." Annales scientifiques de l'École Normale Supérieure 8.4 (1975): 509-533. <http://eudml.org/doc/81969>.

@article{Baues1975,
author = {Baues, Hans Joachim},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {ger},
number = {4},
pages = {509-533},
publisher = {Elsevier},
title = {Relationen für primäre Homotopieoperationen und eine verallgemeinerte EHP-Sequenz},
url = {http://eudml.org/doc/81969},
volume = {8},
year = {1975},
}

TY - JOUR
AU - Baues, Hans Joachim
TI - Relationen für primäre Homotopieoperationen und eine verallgemeinerte EHP-Sequenz
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1975
PB - Elsevier
VL - 8
IS - 4
SP - 509
EP - 533
LA - ger
UR - http://eudml.org/doc/81969
ER -

References

top
  1. [1] M. ARKOWITZ, The Generalized Whitehead Product (Pac. J. Math., Bd 12, 1962, s. 7-23). Zbl0118.18404MR27 #5262
  2. [2] W. D. BARCUS and M. G. BARRATT, On the Homotopy Classification of the Extensions of a Fixed Map (Trans. Amer. Math. Soc., Bd 88, 1958, s. 57-74). Zbl0095.16801MR20 #3540
  3. [3] H. J. BAUES, Iterierte Join Konstruktionen (Math. Z., Bd 131, 1973, s. 77-84). Zbl0244.55016MR49 #11508
  4. [4] H. J. BAUES, Relative Homotopiegruppen bei Abbildungskegeln, preprint Bonn, 1974 (erscheint in Compositio Math.). Zbl0328.55006
  5. [5] H. J. BAUES, Zur Hindernistheorie (preprint Bonn, 1974). 
  6. [6] J. M. BOARDMAN and B. STEER, On Hopf Invariants (Comment. Math. Helv., Bd 42, 1967, s. 180-221). Zbl0166.19201MR36 #4555
  7. [7] T. TOM DIECK, K. H. KAMPS und D. PUPPE, Homotopietheorie (Lecture Notes in Math., Nr 157, Springer, Berlin, 1970). Zbl0203.25401MR53 #11603
  8. [8] W. ELING, Ueber den Schleifenraum eines Abbildungskegels, Diplomarbeit Bonn, 1974. 
  9. [9] T. GANEA, A Generalization of the Homology and Homotopy Suspension (Comm. Math. Helv., Bd 39, 1965, s. 295-322). Zbl0142.40702MR31 #4033
  10. [10] B. GRAY, On the Homotopy Groups of Mapping Cones [Proc. London Math. Soc., Bd 26, (3), 1973, s. 497-520]. Zbl0263.55012MR48 #12517
  11. [11] B. GRAY, A Note on the Hilton-Milnor Theorem (Top., Bd 10, 1971, s. 199-202). Zbl0221.55012MR43 #6921
  12. [12] K. A. HARDIE, Quasifibration and Adjunction [Pac. J. Math., Bd 35, (2), 1970, s. 389-399]. Zbl0207.53402MR43 #1188
  13. [13] P. J. HILTON, On the Homotopy Groups of a Union of Spheres (J. London Math. Soc., Bd 30, 1955, s. 154-172). Zbl0064.17301MR16,847d
  14. [14] S. Y. HUSSEINI, The Topology of Classical Groups and Related Topics, New York, London, Paris, Gordon and Breach, 1969. Zbl0199.57901MR42 #2503
  15. [15] S. T. HUSSEINI, Constructions of the Reduced Product Type II (Top., Bd 3, 1965, s. 59-79). Zbl0126.38901MR31 #6233b
  16. [16] J. M. JAMES, Reduced Product Spaces (Ann. of Math., Bd 62, (2), 1955, s. 170-197). Zbl0064.41505MR17,396b
  17. [17] J. M. JAMES, On the Homotopy Groups of Certain Pairs and Triads [Quart. J. Math., Oxford, Bd 5, (2), 1954, s. 260-270]. Zbl0058.38901MR16,948e
  18. [18] J. M. JAMES, Filtrations of the Homotopy Groups of Spheres [Quart. J. Math., Oxford, Bd 9, (2), 1958, s. 301-309]. Zbl0084.39101MR20 #7266
  19. [19] J. M. JAMES, On the Suspension Triad. [Ann. of Math., Bd 63, (2), 1956, s. 191-247]. Zbl0071.17002MR17,1117b
  20. [20] J. M. LEMAIRE, Algèbres connexes et homologie des espaces de lacets (Lecture Notes in Math., Nr 422, Springer, Berlin, 1974). Zbl0293.55004MR51 #6793
  21. [21] J. A. LUNDELL and S. WEINGRAM, The Topology of CW-Complexes, Van Nostrand, New York, 1969. Zbl0207.21704
  22. [22] J. W. MILNOR, On the Construction FK, in Algebraic Topology (London Math. Soc., Lecture Note, Series 4, Cambridge, University Press, 1972, s. 119-136). 
  23. [23] G. J. PORTER, Higher Order Whitehead Products (Top., Bd 3, 1965, s. 123-135). Zbl0149.20204MR30 #4261
  24. [24] D. PUPPE, Homotopiemengem und ihre induzierten Abbildungen (I. Math. Z., Bd 69, 1958, s. 299-344). Zbl0092.39803MR20 #6698
  25. [25] J. W. RUTTER, A Homotopy Classification of Maps into an Induced Fibre Space (Top., Bd 6, 1967, s. 379-403). Zbl0152.21804MR35 #4922
  26. [26] B. STEER, Extensions of Mappings into H-Spaces [Prod. London Math. Soc., Bd 13, (3), 1963, s. 219-272]. Zbl0115.17103MR27 #2981
  27. [27] H. TODA, On the Double Suspension E2 (J. of Inst., Polytechnics Osaka, Bd 7, Nr 1-1, Serie A, 1956, s. 103-145). Zbl0073.18303MR19,1188g
  28. [28] G. W. WHITEHEAD, On the Freudenthal Theorems (Ann. of Math., Bd 57, 1953, s. 209-228). Zbl0050.17501MR14,1110d

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.