Classification of free actions by some metacyclic groups on
Annales scientifiques de l'École Normale Supérieure (1980)
- Volume: 13, Issue: 4, page 405-418
- ISSN: 0012-9593
Access Full Article
topHow to cite
topThomas, C. B.. "Classification of free actions by some metacyclic groups on $S^{2n-1}$." Annales scientifiques de l'École Normale Supérieure 13.4 (1980): 405-418. <http://eudml.org/doc/82058>.
@article{Thomas1980,
author = {Thomas, C. B.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {free group actions on spheres; metacyclic group actions; equivariant homeomorphism type; Reidemeister torsion; space of orientation preserving diffeomorphisms of spheres},
language = {eng},
number = {4},
pages = {405-418},
publisher = {Elsevier},
title = {Classification of free actions by some metacyclic groups on $S^\{2n-1\}$},
url = {http://eudml.org/doc/82058},
volume = {13},
year = {1980},
}
TY - JOUR
AU - Thomas, C. B.
TI - Classification of free actions by some metacyclic groups on $S^{2n-1}$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1980
PB - Elsevier
VL - 13
IS - 4
SP - 405
EP - 418
LA - eng
KW - free group actions on spheres; metacyclic group actions; equivariant homeomorphism type; Reidemeister torsion; space of orientation preserving diffeomorphisms of spheres
UR - http://eudml.org/doc/82058
ER -
References
top- [1] J. F. ADAMS, Maps Between Classifying Spaces II (Invent. Math., Vol. 49, 1978, pp. 1-65). Zbl0399.55011MR80e:55032
- [2] P. ANTONELLI, D. BURGHELEA and P. KAHN, The Nonfinite Type of Some Diffeomorphism Groups (Topology, Vol. 11, 1972, pp. 1-49). Zbl0225.57013
- [3] M. ATIYAH and R. BOTT, A Lefschetz Fixed Point Formula for Elliptic Complexes II. Applications (Annals of Math., Vol. 88, 1968, pp. 451-491). Zbl0167.21703MR38 #731
- [4] G. DE RHAM, Complexes à automorphismes et homéomorphie différentiale (Ann. Inst. Fourier, Vol. 2, 1950, pp. 51-67). Zbl0043.17601MR13,268c
- [5] S. GALOVICH, I. REINER and S. ULLOM, Class Groups for Integral Representations of Metacyclic Groups (Mathematika, Vol. 19, 1972, pp. 105-111). Zbl0248.12010MR48 #4087
- [6] M. KEATING, Whitehead Groups of Some Metacyclic Groups and Orders (J. Algebra, Vol. 22, 1972, pp. 332-349). Zbl0237.18006MR46 #9145
- [7] I. MADSEN, Smooth Spherical Space Forms (Springer Lecture Notes, No. 657, 1978, pp. 303-352). Zbl0405.57026MR81e:57041
- [8] I. MADSEN, C. THOMAS and C. T. C. WALL, Topological Spherical Space form Problem II. Existence of Free Actions (Topology, Vol. 15, 1976, pp. 375-382). Zbl0348.57019MR54 #13952
- [9] J. MILNOR, Whitehead Torsion (Bull. Amer. Math. Soc., Vol. 72, 1966, pp. 358-426). Zbl0147.23104MR33 #4922
- [10] T. PETRIE, Free Metacyclic Group Actions on Homotopy Spheres (Annals of Math., Vol. 94, 1971, pp. 108-124). Zbl0224.57020MR45 #2744
- [11] J. P. SERRE, Représentations linéaires des groupes finis, 2e éd., Hermann, Paris, 1971. Zbl0223.20003MR50 #4718
- [12] D. SULLIVAN, Triangulating Homotopy equivalences (Geometric Topology Seminar Notes, Princeton University, 1967).
- [13] R. G. SWAN, Periodic Resolutions for Finite Groups (Annals of Math., Vol. 72, 1960, pp. 267-291). Zbl0096.01701MR23 #A2205
- [14] R. G. SWAN, Projective Modules Over Group Rings and Maximal Orders (Annals of Math., Vol. 76, 1962, pp. 55-61). Zbl0112.02702MR25 #3066
- [15] M. TAYLOR, private communication.
- [16] C. T. C. WALL, The Topological Space form Problems (Proc. Inst. University of Georgia, Athens, Ga., 1969, pp. 319-331). Zbl0283.57019MR43 #5540
- [17] C. T. C. WALL, Surgery on Compact Manifolds, Academic Press, London, 1970. Zbl0219.57024MR55 #4217
- [18] C. T. C. WALL, Classification of Hermitian Forms VI : Group Rings (Annals of Math., Vol. 103, 1976, pp. 1-80). Zbl0328.18006MR55 #5720
- [19] C. T. C. WALL, Periodic Projective Resolutions [Proc. London Math. Soc., Vol. 39, (3), 1974, pp. 509-533]. Zbl0433.18006MR81h:18013
- [20] J. A. WOLF, Spaces of Constant Curvature, 1st ed., McGraw Hill, New York, 1967. Zbl0162.53304MR36 #829
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.