Classification of free actions by some metacyclic groups on S 2 n - 1

C. B. Thomas

Annales scientifiques de l'École Normale Supérieure (1980)

  • Volume: 13, Issue: 4, page 405-418
  • ISSN: 0012-9593

How to cite

top

Thomas, C. B.. "Classification of free actions by some metacyclic groups on $S^{2n-1}$." Annales scientifiques de l'École Normale Supérieure 13.4 (1980): 405-418. <http://eudml.org/doc/82058>.

@article{Thomas1980,
author = {Thomas, C. B.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {free group actions on spheres; metacyclic group actions; equivariant homeomorphism type; Reidemeister torsion; space of orientation preserving diffeomorphisms of spheres},
language = {eng},
number = {4},
pages = {405-418},
publisher = {Elsevier},
title = {Classification of free actions by some metacyclic groups on $S^\{2n-1\}$},
url = {http://eudml.org/doc/82058},
volume = {13},
year = {1980},
}

TY - JOUR
AU - Thomas, C. B.
TI - Classification of free actions by some metacyclic groups on $S^{2n-1}$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1980
PB - Elsevier
VL - 13
IS - 4
SP - 405
EP - 418
LA - eng
KW - free group actions on spheres; metacyclic group actions; equivariant homeomorphism type; Reidemeister torsion; space of orientation preserving diffeomorphisms of spheres
UR - http://eudml.org/doc/82058
ER -

References

top
  1. [1] J. F. ADAMS, Maps Between Classifying Spaces II (Invent. Math., Vol. 49, 1978, pp. 1-65). Zbl0399.55011MR80e:55032
  2. [2] P. ANTONELLI, D. BURGHELEA and P. KAHN, The Nonfinite Type of Some Diffeomorphism Groups (Topology, Vol. 11, 1972, pp. 1-49). Zbl0225.57013
  3. [3] M. ATIYAH and R. BOTT, A Lefschetz Fixed Point Formula for Elliptic Complexes II. Applications (Annals of Math., Vol. 88, 1968, pp. 451-491). Zbl0167.21703MR38 #731
  4. [4] G. DE RHAM, Complexes à automorphismes et homéomorphie différentiale (Ann. Inst. Fourier, Vol. 2, 1950, pp. 51-67). Zbl0043.17601MR13,268c
  5. [5] S. GALOVICH, I. REINER and S. ULLOM, Class Groups for Integral Representations of Metacyclic Groups (Mathematika, Vol. 19, 1972, pp. 105-111). Zbl0248.12010MR48 #4087
  6. [6] M. KEATING, Whitehead Groups of Some Metacyclic Groups and Orders (J. Algebra, Vol. 22, 1972, pp. 332-349). Zbl0237.18006MR46 #9145
  7. [7] I. MADSEN, Smooth Spherical Space Forms (Springer Lecture Notes, No. 657, 1978, pp. 303-352). Zbl0405.57026MR81e:57041
  8. [8] I. MADSEN, C. THOMAS and C. T. C. WALL, Topological Spherical Space form Problem II. Existence of Free Actions (Topology, Vol. 15, 1976, pp. 375-382). Zbl0348.57019MR54 #13952
  9. [9] J. MILNOR, Whitehead Torsion (Bull. Amer. Math. Soc., Vol. 72, 1966, pp. 358-426). Zbl0147.23104MR33 #4922
  10. [10] T. PETRIE, Free Metacyclic Group Actions on Homotopy Spheres (Annals of Math., Vol. 94, 1971, pp. 108-124). Zbl0224.57020MR45 #2744
  11. [11] J. P. SERRE, Représentations linéaires des groupes finis, 2e éd., Hermann, Paris, 1971. Zbl0223.20003MR50 #4718
  12. [12] D. SULLIVAN, Triangulating Homotopy equivalences (Geometric Topology Seminar Notes, Princeton University, 1967). 
  13. [13] R. G. SWAN, Periodic Resolutions for Finite Groups (Annals of Math., Vol. 72, 1960, pp. 267-291). Zbl0096.01701MR23 #A2205
  14. [14] R. G. SWAN, Projective Modules Over Group Rings and Maximal Orders (Annals of Math., Vol. 76, 1962, pp. 55-61). Zbl0112.02702MR25 #3066
  15. [15] M. TAYLOR, private communication. 
  16. [16] C. T. C. WALL, The Topological Space form Problems (Proc. Inst. University of Georgia, Athens, Ga., 1969, pp. 319-331). Zbl0283.57019MR43 #5540
  17. [17] C. T. C. WALL, Surgery on Compact Manifolds, Academic Press, London, 1970. Zbl0219.57024MR55 #4217
  18. [18] C. T. C. WALL, Classification of Hermitian Forms VI : Group Rings (Annals of Math., Vol. 103, 1976, pp. 1-80). Zbl0328.18006MR55 #5720
  19. [19] C. T. C. WALL, Periodic Projective Resolutions [Proc. London Math. Soc., Vol. 39, (3), 1974, pp. 509-533]. Zbl0433.18006MR81h:18013
  20. [20] J. A. WOLF, Spaces of Constant Curvature, 1st ed., McGraw Hill, New York, 1967. Zbl0162.53304MR36 #829

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.