Les singularités simples elliptiques, leurs déformations, les surfaces de del Pezzo et les transformations quadratiques

J.-Y. Mérindol

Annales scientifiques de l'École Normale Supérieure (1982)

  • Volume: 15, Issue: 1, page 17-44
  • ISSN: 0012-9593

How to cite

top

Mérindol, J.-Y.. "Les singularités simples elliptiques, leurs déformations, les surfaces de del Pezzo et les transformations quadratiques." Annales scientifiques de l'École Normale Supérieure 15.1 (1982): 17-44. <http://eudml.org/doc/82091>.

@article{Mérindol1982,
author = {Mérindol, J.-Y.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {deformations; simple elliptic singularity; del Pezzo surfaces; enumeration of singular points},
language = {fre},
number = {1},
pages = {17-44},
publisher = {Elsevier},
title = {Les singularités simples elliptiques, leurs déformations, les surfaces de del Pezzo et les transformations quadratiques},
url = {http://eudml.org/doc/82091},
volume = {15},
year = {1982},
}

TY - JOUR
AU - Mérindol, J.-Y.
TI - Les singularités simples elliptiques, leurs déformations, les surfaces de del Pezzo et les transformations quadratiques
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1982
PB - Elsevier
VL - 15
IS - 1
SP - 17
EP - 44
LA - fre
KW - deformations; simple elliptic singularity; del Pezzo surfaces; enumeration of singular points
UR - http://eudml.org/doc/82091
ER -

References

top
  1. [1] N. BOURBAKI, Groupes et algèbres de Lie, chap. 4, 5 et 6, Hermann, Paris, 1969. 
  2. [2] J. A. CARLSON, The Obstruction to Splitting a Mixed Hodge Structure over the Integers, I, Preprint, Univertity of Utah. 
  3. [3] H. S. M. COXETER, Finite Groups generated by Reflections and their Subgroups Generated by Reflections (Proc. Cambridge Philos. Soc., vol. 30, 1934). Zbl0010.15403
  4. [4] M. DEMAZURE, Surfaces de Del Pezzo, II, III, IV et V (Lecture Notes in Math., n° 77, Berlin, Heidelberg, New York, Springer, 1980). Zbl0444.14024
  5. [5] P. DU VAL, On Isolated Singularities which do not Affect the Conditions of Adjunction. III (Proc. Cambridge Philos. Soc., vol. 30, 1934). Zbl0010.17701JFM60.0600.01
  6. [6] H. KNÖRRER, Die Singularitäten vom Typ D (Math. Ann., vol. 251, 1980, p. 135-150). Zbl0423.32011
  7. [7] E. LOOIJENGA, Roots Systems and Elliptic Curves (Inventiones Math., vol. 38, 1976, p. 17-32). Zbl0358.17016MR57 #6015
  8. [8] E. LOOIJENGA, On the Semi-Universal Deformation of a Simple Elliptic Singularity II (Topology, vol. 17, 1978, p. 23-40). Zbl0392.57013MR58 #11503
  9. [9] Y. I. MANIN, Cubic Forms, Amsterdam North-Holland, 1974. Zbl0277.14014
  10. [10] D. MUMFORD, Abelian Varieties, Oxford University Press, 1970. Zbl0223.14022MR44 #219
  11. [11] H. PINKHAM, Résolution simultanée de points doubles rationnels (Lecture Notes in Math., n° 777, Berlin, Heidelberg, New York, Springer, 1980). Zbl0457.14004MR82d:14021
  12. [12] H. PINKHAM, Deformations of Algebrics Varieties with Gm Action (Astérisque, vol. 20, Soc, Math. France, 1974). Zbl0304.14006MR51 #12847
  13. [13] H. PINKHAM, Deformation of Normal Surface Singularities with C& Action (Math. Ann., vol. 232, 1978, p. 65-84). Zbl0351.14004MR58 #16648
  14. [14] H. PINKHAM, Simple Elliptic Singularities, Del Pezzo Surface and Cremona Transformations (Proc. of Symposia in Pure Math., vol. 30, 1977, p. 69-70). Zbl0391.14006MR56 #358
  15. [15] G. N. TJURINA, Resolution of Singularities for Flat Deformations of Rational Double Points (Funk. Anal. i Pril., vol. 4, 1970, p. 77-83). Zbl0221.32008MR42 #2031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.