Changement de base pour les représentations tempérées des groupes réductifs réels

Laurent Clozel

Annales scientifiques de l'École Normale Supérieure (1982)

  • Volume: 15, Issue: 1, page 45-115
  • ISSN: 0012-9593

How to cite

top

Clozel, Laurent. "Changement de base pour les représentations tempérées des groupes réductifs réels." Annales scientifiques de l'École Normale Supérieure 15.1 (1982): 45-115. <http://eudml.org/doc/82094>.

@article{Clozel1982,
author = {Clozel, Laurent},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {change of basis; integrability; discrete series; tempered distribution; tempered representation; lifting; reductive group; irreducible admissible representations; L-group; L-packet; tempered L-packets},
language = {fre},
number = {1},
pages = {45-115},
publisher = {Elsevier},
title = {Changement de base pour les représentations tempérées des groupes réductifs réels},
url = {http://eudml.org/doc/82094},
volume = {15},
year = {1982},
}

TY - JOUR
AU - Clozel, Laurent
TI - Changement de base pour les représentations tempérées des groupes réductifs réels
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1982
PB - Elsevier
VL - 15
IS - 1
SP - 45
EP - 115
LA - fre
KW - change of basis; integrability; discrete series; tempered distribution; tempered representation; lifting; reductive group; irreducible admissible representations; L-group; L-packet; tempered L-packets
UR - http://eudml.org/doc/82094
ER -

References

top
  1. [1] A. BOREL, Automorphic L-Functions (Proc. Sym. Pure Math., vol. 33, n° 2, 1979, p. 27-61). Zbl0412.10017MR81m:10056
  2. [2] A. BOREL et J. TITS, Groupes réductifs (I.H.E.S. Publ. Math., vol. 27, 1975, p. 55-150). Zbl0145.17402MR34 #7527
  3. [3] A. BOREL et N. WALLACH, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups (Ann. of Math. Studies, vol. 94, Princeton U.P. 1980). Zbl0443.22010MR83c:22018
  4. [4] L. CLOZEL, "Base Change" géométrique: Relèvement de la série principale de GL (n, ℂ/ℝ), Springer LN 728, 1979, p. 17-41. Zbl0495.20020MR81d:20038
  5. [5] L. CLOZEL, Sur le "base change" pour les formes réelles de GL (2, ℂ), Université Paris-VII, U.E.R. de Math., 1980. 
  6. [6] M. DUFLO, Représentations irréductibles des groupes semi-simples complexes, Springer LN 497, 1975, p. 26-88. Zbl0315.22008MR53 #3198
  7. [7] P. GERARDIN, La classification de R.P. Langlands des représentations irréductibles des groupes réductifs réels (notes non publiées). 
  8. [8] S. HELGASON, Differential Geometry and Symmetric Spaces, Academic Press, 1959. 
  9. [9] T. HIRAI, The Characters of Some Induced Representations of Semi-Simple Lie Groups (J. Math. Kyoto Univ., vol. 8, 1968, p. 313-363). Zbl0185.21503MR39 #354
  10. [10] A. KNAPP, Commutativity of Intertwining Operators II (Bull. A. M. S. vol. 82, 1976, p. 271-273). Zbl0333.22006MR53 #10986
  11. [11] A. KNAPP, Commutativity of Intertwining Operators for Semi-Simple Groups (preprint). 
  12. [12] A. KNAPP et E. M. STEIN, Intertwining Operators for Semi-Simple Groups (Ann. of Math., vol. 93, 1971, p. 489-578). Zbl0257.22015MR57 #536
  13. [13] R. P. LANGLANDS, Problems in the Theory of Automorphic Forms, Springer LN 170, 1970, p. 18-86. Zbl0225.14022MR46 #1758
  14. [14] R. P. LANGLANDS, On the Classification of Irreducible Representations of Real Algebraic Groups, preprint (sic), I.A.S., Princeton, 1973. 
  15. [15] R. P. LANGLANDS, Stable Conjugacy: Definitions and Lemmas (Can. J. Math., vol. 31, n° 4, 1979, p. 700-725). Zbl0421.12013MR82j:10054
  16. [16] J. REPKA, Base Change Lifting and Galois Invariance (preprint). Zbl0431.12015
  17. [17] J. REPKA, Base Change for Tempered Irreductible Representations of GL (n, ℝ) (à paraître). 
  18. [18] J. REPKA, Base Change and Induced Representations of Real Reductive Groups (preprint). 
  19. [19] D. SHELSTAD, Characters and Inner Forms of a Quasi-Split Group Over ℝ, (Comp. Math., vol. 39, 1979, p. 11-45). Zbl0431.22011MR80m:22023
  20. [20] D. SHELSTAD, Some Character Relations for Real Reductive Algebraic Groups (Thèse, Yale, 1974). 
  21. [21] D. SHELSTAD, Base Change and a Matching Theorem for Real Groups (preprint). 
  22. [22] T. SHINTANI, On Irreductible Unitary Characters of a Certain Group Extention of GL (2, ℂ) (J. Math. Soc. Japan, vol. 29, n° 1, 1977). Zbl0342.20021
  23. [23] R. STEINBERG, Regular Elements of Semi-Simple Algebraic Groups (I.H.E.S. Pbl. Math., vol. 25, 1965, p. 49-80). Zbl0136.30002MR31 #4788
  24. [24] R. STEINBERG et T. A. SPRINGER, in A. BOREL et coll., Seminar on Algebraic Groups and Related Finite Groups, Springer LN 131, 1970. Zbl0192.36201
  25. [25] M. SIGIURA, Conjugate Classes of Cartan Subalgebras in Real Semi-Simple Lie algebras (J. Math. Soc. Japon, vol. 11, 1959, p. 374-434). Zbl0204.04201MR26 #3827
  26. [26] J. TATE, Number Theoretic Background (Proc. Symp. Pure Math., vol. 33, n° 2, 1979, p. 3-26). Zbl0422.12007MR80m:12009
  27. [27] V. S. VARADARAJAN, Harmonic Analysis on Real Reductive Groups, Springer LN 576, 1977. Zbl0354.43001MR57 #12789
  28. [28] N. WALLACH, Representations of Reductive Lie Groups (Proc. Symp. Pure Math., vol. 33, n° 1, 1979, p. 71-86). Zbl0421.22006MR80m:22024
  29. [29] N. WALLACH, Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, 1973. Zbl0265.22022MR58 #16978
  30. [30] G. WARNER, Harmonic Analysis on Semi-Simple Lie Groups, I-II, Springer, 1972. Zbl0265.22021

Citations in EuDML Documents

top
  1. Abderrazak Bouaziz, Formule d'inversion d'intégrales orbitales tordues
  2. P. Delorme, Théorème de Paley-Wiener invariant tordu pour le changement de base /
  3. Abderrazak Bouaziz, Intégrales orbitales sur les groupes de Lie réductifs
  4. Alex Gorodnik, François Maucourant, Hee Oh, Manin’s and Peyre’s conjectures on rational points and adelic mixing
  5. Laurent Clozel, Représentations galoisiennes associées aux représentations automorphes autoduales de G L ( n )

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.