Théorème de Paley-Wiener invariant tordu pour le changement de base /

P. Delorme

Compositio Mathematica (1991)

  • Volume: 80, Issue: 2, page 197-228
  • ISSN: 0010-437X

How to cite

top

Delorme, P.. "Théorème de Paley-Wiener invariant tordu pour le changement de base $\mathbb {C} / \mathbb {R}$." Compositio Mathematica 80.2 (1991): 197-228. <http://eudml.org/doc/90121>.

@article{Delorme1991,
author = {Delorme, P.},
journal = {Compositio Mathematica},
keywords = {connected quasi-split reductive algebraic group; irreducible admissible representations; intertwining operator; twisted Paley-Wiener theorem; smooth compactly support functions},
language = {fre},
number = {2},
pages = {197-228},
publisher = {Kluwer Academic Publishers},
title = {Théorème de Paley-Wiener invariant tordu pour le changement de base $\mathbb \{C\} / \mathbb \{R\}$},
url = {http://eudml.org/doc/90121},
volume = {80},
year = {1991},
}

TY - JOUR
AU - Delorme, P.
TI - Théorème de Paley-Wiener invariant tordu pour le changement de base $\mathbb {C} / \mathbb {R}$
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 80
IS - 2
SP - 197
EP - 228
LA - fre
KW - connected quasi-split reductive algebraic group; irreducible admissible representations; intertwining operator; twisted Paley-Wiener theorem; smooth compactly support functions
UR - http://eudml.org/doc/90121
ER -

References

top
  1. [1] Arthur, J., Clozel, L., Simple algebras, base change and the advanced theory of the trace formula, Annals of Math. Studies n° 120, Princeton University Press, Princeton (1989). Zbl0682.10022MR1007299
  2. [2] Atyah, M., Schmid, W., A geometric construction of the discrete series for semi-simple Lie groups. Invent. Math.42, 1-62 (1977). Zbl0373.22001MR463358
  3. [3] Borel, A., Wallach, N., Continuous cohomology, discrete subgroups and representations of reductive groups, Annals of Math. Studies94, Princeton University Press, Princeton (1980). Zbl0443.22010MR554917
  4. [4] Borovoi, M.V., Cohomologies of real reductive groups and real forms, Func. Anal. and Applic.22, 135-136 (1988). Zbl0667.22002MR947609
  5. [5] Bouaziz, A., Sur les caractères des groupes de Lie réductifs non connexes, J. of Funct. Anal.70, 1-79 (1987). Zbl0622.22009MR870753
  6. [6] Bouaziz, A., Relèvement des caractères de'un groupe endoscopique pour le changement de base C/R, in Astérisque n° 171-172, 163-194 (1989). Zbl0708.22004MR1021503
  7. [7] Bouaziz, A., Formule d'inversion d'intégrales orbitales tordues, à paraître dans Compositio Mathematica. 
  8. [8] Clozel, L., Changement de base pour les représentations tempérées des groupes réductifs réels, Ann. Sc. E.N.S. 15, 45-115 (1982). Zbl0516.22010MR672475
  9. [9] Clozel, L., Représentations galoisiennes associées aux représentations automorphes auto-duales de GL(n), preprint. Zbl0739.11020
  10. [10] Clozel, L., Delorme, P., Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs, Invent. Math.77, 427-453 (1984). Zbl0584.22005MR759263
  11. [11] Clozel, L., Delorme, P., Pseudo-coefficients et cohomologie des groupes réductifs réels, C.R.A.S.Paris, t.300, Ser. I, n° 12, 385-387 (1985). Zbl0593.22010MR794744
  12. [12] Clozel, L., Delorme, P., Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs, II, Ann. Sc. E.N.S. 23, 193-228 (1990). Zbl0724.22012MR1046496
  13. [13] Cowling, M., On the Paley-Wiener theorem, Inv. Math.83, 403-404 (1986). Zbl0591.43007MR818359
  14. [14] De George, D., Wallach, N., Limit formulas for multiplicities in L2(G/Γ), Ann. of Math.107, 133-150 (1978). Zbl0397.22007
  15. [15] Delorme, P., Flensted Jensen, M., Towards a Paley-Wiener theorem for semisimple symmetric spaces, à paraître dans, Acta Mathematica. Zbl0806.22009
  16. [16] Duflo, M., Représentations irréductibles des groupes de Lie semi-simples complexes, Lecture Notes in Math.497, Springer, 26-87 (1975). Zbl0315.22008MR399353
  17. [17] Duflo, M., Heckman, G., Vergne, M., Projection d'orbites, formule de Kirillov et formule de Blattner, in Mémoire de la S.M.F. n° 15, 65-128 (1984). Zbl0575.22014MR789081
  18. [18] Enright, T., Relative Lie algebra cohomology and unitary representations of complex Lie groups, Duke Math. J.46, 513-525 (1979). Zbl0427.22010MR544243
  19. [19] Labesse, J.P., Formule des traces tordues et représentations σ-discrètes, preprint. 
  20. [20] Labesse, J.P., Pseudo-coefficients très cuspidaux et K-théorie, preprint. Zbl0789.22028MR1135534
  21. [21] Preiss Rothschild, L., Orbits in a real reductive Lie algebra, Transact. Amer. Math. Soc.168, 403-421 (1972). Zbl0222.17009MR349778
  22. [22] Rohlfs, J., Speh, B., Automorphic representations and Lefschetz numbers, Ann. Sc. E.N.S.22, 473-499 (1989). Zbl0689.22005MR1011990
  23. [23] Shelstad, D., Endoscopic groups and base change C/R, Pacif. J. Math.110, 396-416 (1984). Zbl0488.22033MR726498
  24. [24] Shelstad, D., Orbital integrals, endoscopic groups and L-indistinguishability for real groups, in Journées Automorphes, Publ. Math. Univ. Paris VII, Paris135-219. Zbl0529.22007MR723184
  25. [25] Steinberg, R., Regular elements of semisimple algebraic groups, Inst. Hautes Etudes Sci., Publ. Math.25, 49-80 (1965). Zbl0136.30002MR180554
  26. [26] Vogan, D., Représentations of real reductive groups, Progress in Math., Birkhäuser (1981). Zbl0469.22012MR632407
  27. [27] Wallach, N., Harmonic analysis on homogeneous spaces, Marcel Dekker, New York (1972). Zbl0265.22022MR498996
  28. [28] Warner, G., Harmonic analysis on semisimple Lie groups, Vol. I, Berlin-Heidelberg- New York, Springer (1972). Zbl0265.22020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.