Positive measure sets of ergodic rational maps

Mary Rees

Annales scientifiques de l'École Normale Supérieure (1986)

  • Volume: 19, Issue: 3, page 383-407
  • ISSN: 0012-9593

How to cite

top

Rees, Mary. "Positive measure sets of ergodic rational maps." Annales scientifiques de l'École Normale Supérieure 19.3 (1986): 383-407. <http://eudml.org/doc/82180>.

@article{Rees1986,
author = {Rees, Mary},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {ergodicity; invariant measures equivalent to Lebesgue measure; analytic family of rational maps},
language = {eng},
number = {3},
pages = {383-407},
publisher = {Elsevier},
title = {Positive measure sets of ergodic rational maps},
url = {http://eudml.org/doc/82180},
volume = {19},
year = {1986},
}

TY - JOUR
AU - Rees, Mary
TI - Positive measure sets of ergodic rational maps
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1986
PB - Elsevier
VL - 19
IS - 3
SP - 383
EP - 407
LA - eng
KW - ergodicity; invariant measures equivalent to Lebesgue measure; analytic family of rational maps
UR - http://eudml.org/doc/82180
ER -

References

top
  1. [B-C] M. BENEDICKS and L. CARLESON, On Iterations of l-ax2 on (-1, 1), Institut Mittag-Leffler, Report No. 3, 1983. 
  2. [B] H. BROLIN, Invariant Sets Under Iteration of Rational Functions, (Arkiv for Mathmatik, Vol. 6, 1965, pp. 103-144). Zbl0127.03401MR33 #2805
  3. [D] P. L. DUREN, Univalent Functions, New York, Springer, 1983. Zbl0514.30001MR85j:30034
  4. [F] P. FATOU, Sur les équations fonctionnelles (Bull. Soc. Math. Fr., Vol. 47, 1919, pp. 161-271 and Vol. 48, 1920, pp. 33-94 and pp. 208-314). Zbl47.0921.02JFM47.0921.02
  5. [H 1] M. R. HERMAN, Construction d'un difféomorphisme minimal d'entropie topologique non nulle (Erg. Theory and Dynam. Syst., Vol. 1, 1981, pp. 65-76). Zbl0469.58008MR83c:58046
  6. [H 2] M. R. HERMAN, Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2 (to appear). Zbl0554.58034
  7. [J] M. V. JABOBSON, Absolutely Continuous Invariant Measures for One-Parameter Families of One-Dimensional Maps (Comm. in Math. Phys., Vol. 81, 1981, pp. 39-88). Zbl0497.58017MR83j:58070
  8. [M-S-S] R. MANÉ, P. SAD and D. SULLIVAN, On the Dynamics of Rational Maps (Ann. Éc. Norm. Sup., Vol. 16, 1983, pp. 193-217). Zbl0524.58025MR85j:58089
  9. [R] M. REES, Ergodic Rational Maps with Dense Critical Point Forward Orbit (Erg. Theory and Dynam. Syst., Vol. 4, 1984, pp. 311-322). Zbl0553.58008MR85m:58111
  10. [S 1] D. SULLIVAN, Conformal Dynamical Systems, Geometric Dynamics, (Lecture Notes in Math., No. 1007, 1981, pp. 725-752). Zbl0524.58024MR85m:58112
  11. [S 2] D. SULLIVAN, Quasi-Conformal Homeomorphisms and Dynamics I (to appear). 
  12. [SZ] W. SZLENK, Some Dynamical Properties of Certain Differentiable Mappings of an Interval (Bol. Soc. Mat. Mex., Vol. 24, No. 2, 1979, pp. 57-82). Zbl0487.58013MR83c:58048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.