Polynômes quadratiques et attracteur de Hénon

Jean-Christophe Yoccoz

Séminaire Bourbaki (1990-1991)

  • Volume: 33, page 143-165
  • ISSN: 0303-1179

How to cite

top

Yoccoz, Jean-Christophe. "Polynômes quadratiques et attracteur de Hénon." Séminaire Bourbaki 33 (1990-1991): 143-165. <http://eudml.org/doc/110136>.

@article{Yoccoz1990-1991,
author = {Yoccoz, Jean-Christophe},
journal = {Séminaire Bourbaki},
keywords = {quadratic polynomials; rational fractions; Hénon attractors},
language = {fre},
pages = {143-165},
publisher = {Société Mathématique de France},
title = {Polynômes quadratiques et attracteur de Hénon},
url = {http://eudml.org/doc/110136},
volume = {33},
year = {1990-1991},
}

TY - JOUR
AU - Yoccoz, Jean-Christophe
TI - Polynômes quadratiques et attracteur de Hénon
JO - Séminaire Bourbaki
PY - 1990-1991
PB - Société Mathématique de France
VL - 33
SP - 143
EP - 165
LA - fre
KW - quadratic polynomials; rational fractions; Hénon attractors
UR - http://eudml.org/doc/110136
ER -

References

top
  1. [1] M. Jakobson - Topological and metric properties of 1-dimensional endomorphisms, Soviet Math. Dokl.19 (1978), 1452-56. Zbl0414.28022
  2. [2] M. Jakobson - Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys.81 (1981), 39-88. Zbl0497.58017MR630331
  3. [3] M. Benedicks et L. Carleson - On iterations of 1 — ax2 on (-1,1), Ann. Math.122 (1985), 1-25. Zbl0597.58016MR799250
  4. [4] M. Rychlik - A proof of Jakobson's theorem, Erg. th. and dyn. syst.8 (1988), 93-109. Zbl0671.58019MR939063
  5. [5] M. Rees - Positive measure sets of ergodic rational maps, Ann. Sc. E.N.S.4e série 19 (1986), 383-407. Zbl0611.58038MR870689
  6. [6] M. Hénon - Numerical study of quadratic area preserving mappings, Q. Appl. Math.27 (1969), 291-312. Zbl0191.45403MR253513
  7. [7] M. Hénon - A 2-dimensional mapping with a strange attractor, Comm. Math. Phys.50 (1976), 69-77. Zbl0576.58018MR422932
  8. [8] M. Benedicks et L. Carleson - The dynamics of the Hénon map, preprint (à paraître aux Ann. Math.). Zbl0724.58042MR1087346
  9. [9] L. Mora et E. Viana - Abundance of strange attractors, preprint IMPA (1989). 
  10. [10] D. Ruelle - Repellors for real analytic maps, Erg. th. and dyn. syst.2 (1982), 99-107. Zbl0506.58024MR684247
  11. [11] M. Misiurewicz - Absolutely continuous measures for certain maps of an interval, Publ. Math. IHES53 (1981), 17-51. Zbl0477.58020MR623533
  12. [12] D. Sullivan - Quasi-conformal homeomorphisms I : solution of the Fatou-Julia problem on wandering domains, Ann. of Maths122 (1985), 401-418. Zbl0589.30022MR819553
  13. [13] D. Sullivan - Quasi-conformal homeomorphisms II, III : topological conjugacy classes of analytic endomorphisms, Preprint IHES (1983). 
  14. [14] J.-C. Yoccoz - Sur la connexité locale des ensembles de Julia et du lieu de connexité des polynômes quadratiques, en préparation. 
  15. [15] P. Thieullen, C. Tresser et L.S. Young - Positive exponent for generic 1-parameter families of 1 — d maps, en préparation. Zbl0821.58015
  16. [16] M. Benedicks et L.S. Young - Absolutely continuous invariant measures and random perturbations for certain one-dimensional maps, preprint (1990). MR1162396
  17. [17] D. Sullivan - On the structure of infinitely many dynamical systems nested inside or outside a given one, Notes IHES (1990). 
  18. [18] D. Sullivan - Bounded structure of infinitely renormalizable mappings, in P. Cvitanovic (ed.), Universality in Chaos, 2d edition, Adam Hilger, Bristol (1989). 
  19. [19] R. Mañe, P. Sad et D. Sullivan - On the dynamics of rational maps, Ann. Sc. E.N.S.16 (1983), 193-217. Zbl0524.58025MR732343
  20. [20] E. Fornaess et N. Sibony - Random iteration of rational functions, à paraître dans Erg. th. and dyn. syst. Zbl0753.30019
  21. [21] S. Friedland et J. Milnor - Dynamical properties of plane poly- nomial automorphisms, Erg. th. and dyn. syst.9 (1989), 67-99. Zbl0651.58027MR991490
  22. [22] I.R. Shafarevich - On some infinite dimensional groups, Rend. Mat. e Applic. (Roma)25 (1966), 208-212. Zbl0149.39003MR485898
  23. [23] M. Shub - Stabilité globale des systèmes dynamiques, Astérisque56 (1978). Zbl0396.58014MR513592
  24. [24] S. Smale - Differentiable dynamical systems, B.A.M.S.73 (1967), 747-. Zbl0202.55202MR228014
  25. [25] J. Robbin - A structural stability theorem, Ann. Math.91 (1971), 447-. Zbl0224.58005MR287580
  26. [26] C. Robinson - Structural stability of C1-diffeomorphisms, J. of diff. eq.22 (1976), 28. Zbl0343.58009MR474411
  27. [27] R. Mañe - A proof of the C1-stability conjecture, Publ. Math. IHES, 66 (1988), 161-210. Zbl0678.58022MR932138
  28. [28] J. Palis - On the C1 Ω-stability conjecture, Publ. Math. IHES, 66 (1988), 211-215. Zbl0648.58019
  29. [29] C. Pugh - An improved closing lemma and general density theorem, Am. J. of Math.89 (1967), 1010-. Zbl0167.21804MR226669
  30. [30] S. Newhouse - The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Publ. math. IHES50 (1979), 101-151. Zbl0445.58022MR556584
  31. [31] J. Palis et F. Takens - Homoclinic bifurcations : hyperbolicity, fractional dimensions and infinitely many attractors, Cambridge Univers. Press, à paraître. MR1237641
  32. [32] S. Newhouse, J. Palis et F. Takens - Bifurcations and stability of families of diffeomorphisms, Publ. math. IHES57 (1983), 5-71. Zbl0518.58031MR699057
  33. [33] J. Palis et F. Takens - Hyperbolicity and the creation of homoclinic orbits, Ann. Math.125 (1987), 337-374. Zbl0641.58029MR881272
  34. [34] R. Plykin - On the geometry of hyperbolic attractors of smooth cascades, Russ. math. surveys396 (1984), 85-131. Zbl0584.58038MR771099
  35. [35] A. Douady et J. Hubbard - On the dynamics of polynomial like mappings, Ann. Sc. E.N.S.18 (1985), 287-343. Zbl0587.30028MR816367

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.