Monodromy and Picard-Fuchs equations for families of K 3 -surfaces and elliptic curves

C. Peters

Annales scientifiques de l'École Normale Supérieure (1986)

  • Volume: 19, Issue: 4, page 583-607
  • ISSN: 0012-9593

How to cite

top

Peters, C.. "Monodromy and Picard-Fuchs equations for families of $K3$-surfaces and elliptic curves." Annales scientifiques de l'École Normale Supérieure 19.4 (1986): 583-607. <http://eudml.org/doc/82188>.

@article{Peters1986,
author = {Peters, C.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {monodromy representation of the variations of Hodge structure; Gauss- Manin connection; Picard-Fuchs equations; K3 surfaces; 1-dimensional families of abelian surfaces},
language = {eng},
number = {4},
pages = {583-607},
publisher = {Elsevier},
title = {Monodromy and Picard-Fuchs equations for families of $K3$-surfaces and elliptic curves},
url = {http://eudml.org/doc/82188},
volume = {19},
year = {1986},
}

TY - JOUR
AU - Peters, C.
TI - Monodromy and Picard-Fuchs equations for families of $K3$-surfaces and elliptic curves
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1986
PB - Elsevier
VL - 19
IS - 4
SP - 583
EP - 607
LA - eng
KW - monodromy representation of the variations of Hodge structure; Gauss- Manin connection; Picard-Fuchs equations; K3 surfaces; 1-dimensional families of abelian surfaces
UR - http://eudml.org/doc/82188
ER -

References

top
  1. [B] A. BEAUVILLE, Les familles stables de courbes elliptiques sur P2 admettant quatre fibres singulières (C. R. Acad. Sc., Paris, T. 294, 1982, p. 657). Zbl0504.14016MR83h:14008
  2. [Ba-P] W. BARTH and C. PETERS, Automorphisms of Enriques Surfaces (Invent. Math., Vol. 73, 1983, pp. 383-411). Zbl0518.14023MR85g:14052
  3. [B-B] W. L. BAILY, Jr and A. BOREL, Compactification of arithmetic quotients of bounded symmetric domains (Ann. Math., Vol. 84, 1966, pp. 422-528). Zbl0154.08602MR35 #6870
  4. [B-P] F. BEUKERS and C. PETERS, A family of K3-surfaces and ζ (3) (Journal für d.r.u. angew. Math., Vol. 351, 1984, pp. 42-54). Zbl0541.14007MR87h:11056
  5. [B-P-V] W. BARTH, C. PETERS and A. VAN DE VEN, Compact Complex Surfaces, Ergebnisse der Math. 3 Folge, Band 4, Springer-Verlag, 1984. Zbl0718.14023MR86c:32026
  6. [D] P. DELIGNE, Équations différentielles à points singuliers réguliers (Lect. Notes Math., 163, Springer-Verlag, 1970). Zbl0244.14004MR54 #5232
  7. [K-F] F. KLEIN and R. FRICKE, Vorlesungen über die Theorie der elliptischen Modulfunctionen, I, Teubner, Leipzig, 1890 ; II, Teubner, Leipzig, 1892. JFM22.0455.02
  8. [M] D. R. MORRISON, Some remarks on the moduli of K3-surfaces. In : Classification of algebraic and analytic manifolds, Progress in Math., 39, Birkhöuser Verlag, 1983, pp. 303-332. Zbl0526.14025MR85h:32038
  9. [M2] D. R. MORRISON, On K3-surfaces with large Picard number (Invent. Math., Vol. 75, 1984, pp. 105-121). Zbl0509.14034MR85j:14071
  10. [N] V. NIKULIN, Integral symmetric bilinear forms and some of their applications (Izv. Akad. Nauk S.S.S.R., Vol. 43, 1979, pp. 111-177 ; Math. U.S.S.R. Izvestija, Vol. 14, 1980, pp. 103-167). Zbl0408.10011
  11. [P] I. PIATEČKII-SHAPIRO, Geometry of classical domains and automorphic functions (Russian), Fizmatgiz, Moscow, 1961. French transl. Dunod, Paris, 1966. 
  12. [P-S] C. PETERS and J. STEENBRINK, Infinitesimal variations of Hodge structure and the generic Torelli problem for projective hypersurfaces, In : Classification of algebraic and analytic manifolds, Progress in Math., 39, Birkhöuser Verlag, 1983, pp. 399-463. Zbl0523.14009MR85j:32036
  13. [R] H. RADEMACHER, Topics in analytic number theory (Grundlehren Math. Wiss., 169, Springer-Verlag, 1973). Zbl0253.10002MR51 #358
  14. [R-S] R. REMMERT and K. STEIN, Über die wesentlichen Singularitöten analytischer Mengen (Math. Ann., Vol. 126, 1953, pp. 263-306). Zbl0051.06303MR15,615e
  15. [S] W. SCHMID, Variation of Hodge structure : the singularities of the period mapping (Invent. Math., Vol. 22, 1973, pp. 211-319). Zbl0278.14003MR52 #3157
  16. [S1] T. SHIODA, On elliptic modular surfaces (J. Math. Soc. Japan, Vol. 24, 1972, pp. 20-59). Zbl0226.14013MR55 #2927
  17. [S2] T. SHIODA, The period map of abelian surfaces (J. Fac. Sc. Univ. Tokyo, Vol. 25, 1978, pp. 47-59). Zbl0405.14021MR58 #690
  18. [S-B] J. STIENSTRA and F. BEUKERS, On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces (Math. Ann., Vol. 271, 1985). Zbl0539.14006MR86j:14045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.