On minimal immersions of S n - 1 into S n ( 1 ) , n 4

Wu-yi Hsiang; Per Tomter

Annales scientifiques de l'École Normale Supérieure (1987)

  • Volume: 20, Issue: 2, page 201-214
  • ISSN: 0012-9593

How to cite

top

Hsiang, Wu-yi, and Tomter, Per. "On minimal immersions of $S^{n-1}$ into $S^n(1),\;n \ge 4$." Annales scientifiques de l'École Normale Supérieure 20.2 (1987): 201-214. <http://eudml.org/doc/82197>.

@article{Hsiang1987,
author = {Hsiang, Wu-yi, Tomter, Per},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {spherical Bernstein problem; minimal hyperspheres; isoparametric foliation; foliated minimal immersions},
language = {eng},
number = {2},
pages = {201-214},
publisher = {Elsevier},
title = {On minimal immersions of $S^\{n-1\}$ into $S^n(1),\;n \ge 4$},
url = {http://eudml.org/doc/82197},
volume = {20},
year = {1987},
}

TY - JOUR
AU - Hsiang, Wu-yi
AU - Tomter, Per
TI - On minimal immersions of $S^{n-1}$ into $S^n(1),\;n \ge 4$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1987
PB - Elsevier
VL - 20
IS - 2
SP - 201
EP - 214
LA - eng
KW - spherical Bernstein problem; minimal hyperspheres; isoparametric foliation; foliated minimal immersions
UR - http://eudml.org/doc/82197
ER -

References

top
  1. [1] U. ABRESCH, Isoparametric Hypersurfaces with Four or Six Distinct Curvatures (Math. Ann., Vol. 264, 1983, pp. 283-302). Zbl0505.53027MR85g:53052b
  2. [2] F. J. ALMGREN Jr., Some Interior Regularity Theorems for Minimal Surfaces and an Extension of Bernstein's Theorem (Ann. of Math., (2), 84, 1966, pp. 277-292). Zbl0146.11905MR34 #702
  3. [3] E. CALABI, Minimal Immersions of Surfaces in Euclidean Spheres (J. Diff. Geom., Vol. 1, 1967, pp. 111-125). Zbl0171.20504MR38 #1616
  4. [4] E. CARTAN, Familles de surfaces isoparamétriques dans les espaces à courbure constante (Ann. Math., Vol. 17, 1938, pp. 177-191). Zbl0020.06505JFM64.1361.02
  5. [5] E. CARTAN, Sur les familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques (Math. Z., Vol. 45, 1939, pp. 335-367). Zbl0021.15603MR1,28fJFM65.0792.01
  6. [6] E. CARTAN, Sur quelques familles remarquables d'hypersurfaces (C. R. Congres. Math. Liège, 1939, pp. 30-41). Zbl0025.36601JFM65.1411.02
  7. [7] S. S. CHERN, Differential Geometry, its Past and Future (Actes, Congr. Intern. Math., T. 1, 1970, pp. 41-53). Zbl0232.53001MR55 #1242
  8. [8] S. S. CHERN, On Surfaces of Constant Mean Curvature in a Three-Dimensional Space of Constant Curvature. Zbl0521.53006
  9. [9] D. FERUS, H. KARCHER and H. F. MÜNZER, Cliffordalgebra und neue isoparametrische Hyperflöchen (Math. Z., Vol. 177, 1981, pp. 479-502). Zbl0443.53037
  10. [10] W. T. HSIANG and W. Y. HSIANG, On the Existence of Codimension One Minimal Spheres in Compact Symmetric Spaces of Rank 2, II (J. Diff. Geom., Vol. 17, 1982, pp. 582-594). Zbl0503.53044MR84a:53057
  11. [11] W. Y. HSIANG, Minimal Cones and the Spherical Bernstein Problem, I (Annals of Math., Vol. 118, 1983, pp. 61-73 ; II (Invent. Math., Vol. 74, 1983, pp. 351-369). Zbl0522.53051
  12. [12] W. Y. HSIANG and B. LAWSON, Minimal Submanifolds of Low Cohomogeniety (J. Diff. Geom., Vol. 5, 1971, pp. 1-38). Zbl0219.53045
  13. [13] W. Y. HSIANG and I. STERLING, Minimal Cones and the Spherical Bernstein Problem, III [Invent. Math. (to appear)]. Zbl0615.53054
  14. [14] H. F. MÜNZER, Isoparametrische Hyperflöchen in Sphören, I, (Math. Ann., Vol. 251, 1980, pp. 57-71) ; II (Math. Ann., Vol. 256, 1981, pp. 215-232). 
  15. [15] K. NOMIZU, Elie Cartan's Work on Isoparametric Families of Hypersurfaces (Proc. Sym. Pure Math., Vol. 27, 1975, pp. 191-200). Zbl0318.53052MR54 #11240
  16. [16] H. OZEKI and M. TAKEUCHI, On Some Types of Isoparametric Hypersurfaces in Spheres, I (Tohoku Math. J., Vol. 27, 1975, pp. 515-559 ; II (Tohoku Math. J., Vol. 28, 1976, pp. 7-55). Zbl0359.53011
  17. [17] C. L. TERNG, Isoparametric Submanifolds and their Coxeter Groups, preprint, Northeastern University, Boston, Mass. Zbl0615.53047
  18. [18] P. TOMTER, The Spherical Bernstein Problem in Even Dimensions (Bull. Amer. Math. Soc., Vol. 11, No. 1, 1984, pp. 183-185). Zbl0556.53037MR85b:53067
  19. [19] P. TOMTER, The Spherical Bernstein Problem in Even Dimensions and Related Problems [Acta Math. (to appear)]. Zbl0631.53047
  20. [20] D. FERUS and H. KARCHER, Non-Rotational Minimal Spheres and Minimal Cones (Comment. Math. Helv., Vol. 60, 1985, pp. 247-269). Zbl0566.53052MR87a:53097
  21. [21] P. TOMTER, Existence and Uniqueness for a Class of Cauchy-problems with Characteristic Initial Manifolds, Preprint Series, No. 10, December 1985, Institute of Mathematics, University of Oslo. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.