On the existence of minimal hyperspheres in compact symmetric spaces

Wu-teh Hsiang; Wu-yi Hsiang; Per Tomter

Annales scientifiques de l'École Normale Supérieure (1988)

  • Volume: 21, Issue: 2, page 287-305
  • ISSN: 0012-9593

How to cite

top

Hsiang, Wu-teh, Hsiang, Wu-yi, and Tomter, Per. "On the existence of minimal hyperspheres in compact symmetric spaces." Annales scientifiques de l'École Normale Supérieure 21.2 (1988): 287-305. <http://eudml.org/doc/82228>.

@article{Hsiang1988,
author = {Hsiang, Wu-teh, Hsiang, Wu-yi, Tomter, Per},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {equivariant geometry; minimal hyperspheres; symmetric spaces},
language = {eng},
number = {2},
pages = {287-305},
publisher = {Elsevier},
title = {On the existence of minimal hyperspheres in compact symmetric spaces},
url = {http://eudml.org/doc/82228},
volume = {21},
year = {1988},
}

TY - JOUR
AU - Hsiang, Wu-teh
AU - Hsiang, Wu-yi
AU - Tomter, Per
TI - On the existence of minimal hyperspheres in compact symmetric spaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1988
PB - Elsevier
VL - 21
IS - 2
SP - 287
EP - 305
LA - eng
KW - equivariant geometry; minimal hyperspheres; symmetric spaces
UR - http://eudml.org/doc/82228
ER -

References

top
  1. [1] É. CARTAN, Sur une classe remarquable d'espaces de Riemann (Bull. Soc. Math. Fr., Vol. 54, 1926, pp. 214-264 ; Vol. 55, 1927, pp. 964-1029). Zbl53.0390.01JFM53.0390.01
  2. [2] É. CARTAN, La géométrie des groupes de transformations (J. Math. Pures Appl., Vol. 6, 1927, pp. 1-119). Zbl53.0388.01JFM53.0388.01
  3. [3] S. S. CHERN, Differential geometry, its past and its future (Actes Cong. Intern. Math., Vol. 1, 1970, pp. 41-53). Zbl0232.53001MR55 #1242
  4. [4] D. FERUS and H. KARCHER, Non-rotational minimal spheres and minimizing cones (Comment. Math. Helv., Vol. 60, 1985, pp. 247-269). Zbl0566.53052MR87a:53097
  5. [5] W. T. HSIANG and W. Y. HSIANG, On the existence of codimension one minimal spheres in compact symmetric spaces of rank 2, II (J. of Differ. Geom., Vol. 17, 1982, pp. 583-594). Zbl0503.53044MR84a:53057
  6. [6] W. T. HSIANG, W. Y. HSIANG and P. TOMTER, On the construction of infinitely many, mutually noncongruent examples of minimal imbeddings of S²n-1 into CPn, n ≧ 2 (Bull. A.M.S., Vol. 8, 1983, pp. 463-465). Zbl0509.53047MR85a:53048
  7. [7] W. Y. HSIANG, Minimal cones and the spherical Bernstein problem, I (Ann. of Math., Vol. 118, 1983, pp. 61-73 ; II, Invent. Math., Vol. 74, 1983, pp. 351-369. Zbl0522.53051
  8. [8] W. Y. HSIANG and B. H. LAWSON Jr., Minimal submanifolds of low cohomogeneity (J. Differen. Geom., Vol. 5, 1971, pp. 1-38). Zbl0219.53045MR45 #7645
  9. [9] W. Y. HSIANG and I. STERLING, Minimal cones and the spherical Bernstein problem, III (Invent. Math., Vol. 85, 1986, pp. 223-247). Zbl0615.53054MR87k:53139
  10. [10] W. Y. HSIANG and P. TOMTER, On minimal immersions of Sn-1 into Sn(1), n ≧ 4 (Ann. Scient. E.N.S., Vol. 20, 1987, pp. 201-214). Zbl0627.53049MR88m:53111
  11. [11] J. SIMONS, Minimal varieties in Riemannian manifolds (Ann. of Math., Vol. 88, 1968, pp. 62-105). Zbl0181.49702MR38 #1617
  12. [12] P. TOMTER, The spherical Bernstein problem in even dimensions and related problems to appear in Acta Math.) Zbl0631.53047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.