Spectre du laplacien et écrasement d'anses
Annales scientifiques de l'École Normale Supérieure (1987)
- Volume: 20, Issue: 2, page 271-280
- ISSN: 0012-9593
Access Full Article
topHow to cite
topAnné, Colette. "Spectre du laplacien et écrasement d'anses." Annales scientifiques de l'École Normale Supérieure 20.2 (1987): 271-280. <http://eudml.org/doc/82202>.
@article{Anné1987,
author = {Anné, Colette},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {spectrum of the Laplacian; Dirichlet boundary conditions},
language = {fre},
number = {2},
pages = {271-280},
publisher = {Elsevier},
title = {Spectre du laplacien et écrasement d'anses},
url = {http://eudml.org/doc/82202},
volume = {20},
year = {1987},
}
TY - JOUR
AU - Anné, Colette
TI - Spectre du laplacien et écrasement d'anses
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1987
PB - Elsevier
VL - 20
IS - 2
SP - 271
EP - 280
LA - fre
KW - spectrum of the Laplacian; Dirichlet boundary conditions
UR - http://eudml.org/doc/82202
ER -
References
top- [A] C. ANNÉ, Spectre du laplacien et limites de variétés avec perte de dimension I, Prépublication de l'Institut Fourier, 1985.
- [A1] C. ANNÉ, Perturbation du spectre X-TUBεY (conditions de Neumann) (Séminaire de Théorie Spectrale et Géométrie de l'Institut Fourier, vol. 4, 1986, p. 17-23). Zbl1002.58508MR1046060
- [A2] C. ANNÉ, Écrasement d'anses et spectre du laplacien, Prépublications de l'Institut Fourier, n° 67, 1986.
- [B-B] L. BÉRARD-BERGERY et J. P. BOURGUIGNON, Laplacians and Riemannian Submersions with Totally Geodesic Fibres (Illinois J. of Math., vol. 26, 1982, p. 181-200). Zbl0483.58021MR84m:58153
- [B] G. BESSON, A Kato Type Inequality for Riemannian submersions with Totally Geodesic Fibers, (Annals of Global Analysis and Geometry, 1986). Zbl0631.53035MR89b:58215
- [B-G-M] M. BERGER, P. GAUDUCHON et E. MAZET, Le spectre d'une variété riemannienne (Lecture Notes in Math., vol. 194, Springer-Verlag, 1971). Zbl0223.53034MR43 #8025
- [C] G. COURTOIS, Spectre des variété privées d'un ε-tube, Prépublications de l'Institut Fourier, 1986.
- [Ch] I. CHAVEL, Eigenvalues in Riemannian Geometry, Academic Press, 1984. Zbl0551.53001MR86g:58140
- [C-F1] I. CHAVEL et E. A. FELDMAN, Spectra of Domains in Compact Manifolds (J. Fcn'l Anal., vol. 30, 1978, p. 198-222). Zbl0392.58016MR80c:58027
- [C-F2] I. CHAVEL et E. A. FELDMAN, Isoperimetric Constants of Manifolds with Small handles (Math. Zeit., vol. 184, 1983, p. 435-448). Zbl0525.53054MR85e:58149
- [CV] Y. COLIN DE VERDIÈRE, Résonances (Séminaire de Théorie Spectrale et Géométrie de l'Institut Fourier, 1984, p. 85. Zbl1002.58511
- [D] J. J. DUISTERMATT, Fourier Integral Operators (Lecture Notes of the Courant Institute of Mathematical Sciences, New York, 1973).
- [D-R] J. DODZIUK et B. RANDOL, Lower Bounds for λ1 on a Finite-volume Hyperbolique Manifold (à paraître), 1986. Zbl0594.53036
- [F1] K. FUKAYA, Collapsing Riemannian manifolds to Lower Dimentional on [J. Diff. Geom., 1986 (à paraître)].
- [F2] K. FUKAYA, Collapsing of Riemannian Manifolds and Eigenvalues of the Laplace Operator [Invent. Math., 1986 (à paraître)]. Zbl0589.58034
- [K] T. KATO, Perturbation Theory for Linear Operators (Lecture Notes in Math., vol. 132, Springer-Verlag, 1976). Zbl0342.47009MR53 #11389
- [O] S. OZAWA, Spectra of Domains with Small spherical Neumann Boundary (J. Fac. Sc. Univ. of Tokyo, vol. 30, n° 2, 1983, p. 259-277). Zbl0541.35061MR85k:35174
- [R-T] J. RAUCH et M. TAYLOR, Potential and Scattering theory on Wildly Perturbed Domains (J. Fcn'l Anal., 1975, p. 27-59). Zbl0293.35056MR51 #13476
Citations in EuDML Documents
top- Colette Anné, Perturbation du laplacien de Hodge par excision de petites boules
- Jacob Rubinstein, Michelle Schatzman, On multiply connected mesoscopic superconducting structures
- Colette Anné, Introduction aux travaux de Fukaya
- Pierre Guerini, Prescription du spectre du laplacien de Hodge–de Rham
- Bruno Colbois, Spectre conforme et métriques extrémales
- Colette Anné, Fonctions propres sur des variétés avec des anses fines, application à la multiplicité
- Yves Colin de Verdière, Construction de laplaciens dont une partie finie du spectre est donnée
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.