Prescription du spectre du laplacien de Hodge–de Rham

Pierre Guerini

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 2, page 270-303
  • ISSN: 0012-9593

How to cite

top

Guerini, Pierre. "Prescription du spectre du laplacien de Hodge–de Rham." Annales scientifiques de l'École Normale Supérieure 37.2 (2004): 270-303. <http://eudml.org/doc/82631>.

@article{Guerini2004,
author = {Guerini, Pierre},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {convergence of spectrum; Laplacian; Euclidean domain},
language = {fre},
number = {2},
pages = {270-303},
publisher = {Elsevier},
title = {Prescription du spectre du laplacien de Hodge–de Rham},
url = {http://eudml.org/doc/82631},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Guerini, Pierre
TI - Prescription du spectre du laplacien de Hodge–de Rham
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 2
SP - 270
EP - 303
LA - fre
KW - convergence of spectrum; Laplacian; Euclidean domain
UR - http://eudml.org/doc/82631
ER -

References

top
  1. [1] Anné C., Spectre du Laplacien et écrasement d'anses, Ann. Sci. Éc. Norm. Sup.20 (1987) 271-280. Zbl0634.58035MR911759
  2. [2] Anné C., A note on the generalized Dumbbell problem, Proc. Amer Math. Soc.123 (8) (1995) 2595-2599. Zbl0829.58044MR1257096
  3. [3] Anné C., Colbois B., Opérateur de Hodge–Laplace sur les variétés compactes privées d'un nombre fini de boules, J. Funct. Anal.115 (1) (1993). Zbl0791.58018MR1228148
  4. [4] Anné C., Colbois B., Spectre du Laplacien agissant sur les p-formes différentielles et écrasement d'anses, Math. Ann.303 (3) (1995) 545-573. Zbl0909.58054MR1355003
  5. [5] Ashbaugh M.S., Benguria R.D., Proof of the Payne–Polya–Weinberger conjecture, Bull. Amer. Math. Soc., New Ser.25 (1) (1991) 19-29. Zbl0736.35075MR1085824
  6. [6] Bérard P., Spectral Geometry : Direct and Inverse Problem, in: Lecture Notes in Maths., vol. 1207, Springer, Berlin, 1986. Zbl0608.58001MR861271
  7. [7] Cheeger J., On the Hodge theory of Riemannian manifolds, in: Osserman R., Weinstein A. (Eds.), Geometry of the Laplace Operator, Proceedings of Symposia in Pure Mathematics, vol. 36, 1980, pp. 91-146. Zbl0461.58002MR573430
  8. [8] Cheeger J., Spectral geometry of Riemannian singular spaces, J. Differential Geom.18 (1983) 575-657. Zbl0529.58034MR730920
  9. [9] Colbois B., Dodziuk J., Riemannian metrics with large λ1, Proc. Amer. Math. Soc.122 (3) (1994). Zbl0820.58056
  10. [10] Colin de Verdière Y., Construction de laplaciens dont une partie finie du spectre est donnée, Ann. Scient. Éc. Norm. Sup., 420 (1987) 599-615. Zbl0636.58036MR932800
  11. [11] Colin de Verdière Y., Spectres de Graphes, Cours spécialisé, vol. 4, Soc. Math. de France, 1998. Zbl0913.05071MR1652692
  12. [12] Courtois G., Comportement du spectre d'une variété riemannienne compacte sous perturbation topologique par excision d'un domaine, Thèse, Institut Fourier, Grenoble, 1987. 
  13. [13] Dodziuk J., Eigenvalues of the Laplacian on forms, Proc. Amer. Math. Soc.85 (1982) 3. Zbl0502.58038MR656119
  14. [14] Dodziuk J., Appendix of “Eigenvalues in Riemannian Geometry”, Chavel, Academic Press, Orlando, 1984. 
  15. [15] Dodziuk J., Mc Gowan J.K., The spectrum of the Hodge Laplacian for a degenerating family of hyperbolic three manifolds, Trans. Amer. Math. Soc.347 (1995) 1981-1995. Zbl0849.58069MR1308007
  16. [16] Gallot S., Hulin D., Lafontaine J., Riemannian Geometry, Springer-Verlag, 1997. Zbl0636.53001
  17. [17] Guerini P., Spectre du Laplacien agissant sur les formes différentielles d'un domaine euclidien, Thèse de doctorat, Université de Savoie, 2001. 
  18. [18] Guerini P., Spectre du Laplacien de Hodge–de Rham : estimées sur les variétés convexes, À paraître dans le Bulletin of the London Mathematical Society. Zbl1066.58016
  19. [19] Gentile G., Pagliara V., Riemannian metrics with large first eigenvalue on forms of degree p, Proc. Amer. Math. Soc.123 (12) (1995) 3855-3858. Zbl0848.53022MR1277111
  20. [20] Lohkamp J., Discontinuity of geometric expansions, Comment. Math. Helvetia71 (1996) 213-228. Zbl0857.58041MR1396673
  21. [21] Mc Gowan J.K., The p-spectrum of the Laplacian on compact hyperbolic three manifolds, Math. Ann.297 (4) (1993) 725-745. Zbl0801.53034MR1245416
  22. [22] Payne L., Pólya G., Weinberger H., On the ratio of consecutive eigenvalues, J. Math. Phys.35 (1956) 289-298. Zbl0073.08203MR84696
  23. [23] Taylor M.E., Partial Differential Equations, in: Basic Theory (vol. 1), Texts in Applied Mathematics, vol. 115, Springer, 1996. Zbl0869.35001MR1395148
  24. [24] Weinberger H.F., An isoperimetric inequality for the n-dimensional free membrane problem, J. Rational Mech. Anal.5 (1956) 633-636. Zbl0071.09902MR79286

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.