Théorie spectrale de quelques variétés à bouts
Annales scientifiques de l'École Normale Supérieure (1989)
- Volume: 22, Issue: 1, page 137-160
- ISSN: 0012-9593
Access Full Article
topHow to cite
topGuillopé, Laurent. "Théorie spectrale de quelques variétés à bouts." Annales scientifiques de l'École Normale Supérieure 22.1 (1989): 137-160. <http://eudml.org/doc/82244>.
@article{Guillopé1989,
author = {Guillopé, Laurent},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {qualitative spectral theory; Laplacians; Dirac operators; super-symmetry},
language = {fre},
number = {1},
pages = {137-160},
publisher = {Elsevier},
title = {Théorie spectrale de quelques variétés à bouts},
url = {http://eudml.org/doc/82244},
volume = {22},
year = {1989},
}
TY - JOUR
AU - Guillopé, Laurent
TI - Théorie spectrale de quelques variétés à bouts
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1989
PB - Elsevier
VL - 22
IS - 1
SP - 137
EP - 160
LA - fre
KW - qualitative spectral theory; Laplacians; Dirac operators; super-symmetry
UR - http://eudml.org/doc/82244
ER -
References
top- [1] M. ASBAUGH et E. M. HARELL, Perturbation Theory for Shape Resonances and Large Barrier Potentials (Comment. Phys. Math., vol. 83, 1982, p. 151-170). Zbl0494.34044MR84j:81027
- [2] D. BARBASCH et H. MOSCOVICI, L2-Index and the Selberg Trace Formula (J. Funct. Anal., vol. 53, 1983, p. 151-201). Zbl0537.58039MR85j:58137
- [3] H. BAUMGÄRTEL et M. WOLLENBERG, Mathematical Scattering Theory, Akademie-Verlag, Berlin, 1983. Zbl0536.47007
- [4] Y. COLIN DE VERDIÈRE, Pseudo-Laplaciens II (Ann. Inst. Fourier, Grenoble, vol. 32, 1983, p. 87-113). Zbl0496.58016MR84k:58222
- [5] H. DONNELLY, Eigenvalues Estimates for Certain Non-Compact Manifolds (Michigan Math. J., vol. 31, 1984, p. 349-357). Zbl0591.58033MR86d:58120
- [6] HARISH-CHANDRA, Automorphic Forms on Semi-Simple Lie Groups (Lecture Notes in Math., n° 62, Berlin, Heidelberg, New York, Springer-Verlag, 1968). Zbl0186.04702MR38 #1216
- [7] W. MÜLLER, Signature Defects of Cusps of Hilbert Modular Varieties and Values of L-Series at s = 1 (J. Differential Geom., vol. 20, 1984, p. 55-119). Zbl0575.10023MR87c:11048
- [8] W. MÜLLER, Manifolds with Cusps of Rank One (Lecture Notes in Math., n° 1244, Berlin, Heidelberg, New York, Springer-Verlag, 1987). Zbl0632.58001MR89g:58196
- [9] P. A. PERRY, Mellin Transformations and Scattering Theory I. Short Range Potentials (Duke Math. J., vol. 47, 1980, p. 187-193). Zbl0445.47009MR81c:35101
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.