Théorie spectrale de quelques variétés à bouts

Laurent Guillopé

Annales scientifiques de l'École Normale Supérieure (1989)

  • Volume: 22, Issue: 1, page 137-160
  • ISSN: 0012-9593

How to cite

top

Guillopé, Laurent. "Théorie spectrale de quelques variétés à bouts." Annales scientifiques de l'École Normale Supérieure 22.1 (1989): 137-160. <http://eudml.org/doc/82244>.

@article{Guillopé1989,
author = {Guillopé, Laurent},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {qualitative spectral theory; Laplacians; Dirac operators; super-symmetry},
language = {fre},
number = {1},
pages = {137-160},
publisher = {Elsevier},
title = {Théorie spectrale de quelques variétés à bouts},
url = {http://eudml.org/doc/82244},
volume = {22},
year = {1989},
}

TY - JOUR
AU - Guillopé, Laurent
TI - Théorie spectrale de quelques variétés à bouts
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1989
PB - Elsevier
VL - 22
IS - 1
SP - 137
EP - 160
LA - fre
KW - qualitative spectral theory; Laplacians; Dirac operators; super-symmetry
UR - http://eudml.org/doc/82244
ER -

References

top
  1. [1] M. ASBAUGH et E. M. HARELL, Perturbation Theory for Shape Resonances and Large Barrier Potentials (Comment. Phys. Math., vol. 83, 1982, p. 151-170). Zbl0494.34044MR84j:81027
  2. [2] D. BARBASCH et H. MOSCOVICI, L2-Index and the Selberg Trace Formula (J. Funct. Anal., vol. 53, 1983, p. 151-201). Zbl0537.58039MR85j:58137
  3. [3] H. BAUMGÄRTEL et M. WOLLENBERG, Mathematical Scattering Theory, Akademie-Verlag, Berlin, 1983. Zbl0536.47007
  4. [4] Y. COLIN DE VERDIÈRE, Pseudo-Laplaciens II (Ann. Inst. Fourier, Grenoble, vol. 32, 1983, p. 87-113). Zbl0496.58016MR84k:58222
  5. [5] H. DONNELLY, Eigenvalues Estimates for Certain Non-Compact Manifolds (Michigan Math. J., vol. 31, 1984, p. 349-357). Zbl0591.58033MR86d:58120
  6. [6] HARISH-CHANDRA, Automorphic Forms on Semi-Simple Lie Groups (Lecture Notes in Math., n° 62, Berlin, Heidelberg, New York, Springer-Verlag, 1968). Zbl0186.04702MR38 #1216
  7. [7] W. MÜLLER, Signature Defects of Cusps of Hilbert Modular Varieties and Values of L-Series at s = 1 (J. Differential Geom., vol. 20, 1984, p. 55-119). Zbl0575.10023MR87c:11048
  8. [8] W. MÜLLER, Manifolds with Cusps of Rank One (Lecture Notes in Math., n° 1244, Berlin, Heidelberg, New York, Springer-Verlag, 1987). Zbl0632.58001MR89g:58196
  9. [9] P. A. PERRY, Mellin Transformations and Scattering Theory I. Short Range Potentials (Duke Math. J., vol. 47, 1980, p. 187-193). Zbl0445.47009MR81c:35101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.