Les cycles évanescents sont dénoués

B. Perron

Annales scientifiques de l'École Normale Supérieure (1989)

  • Volume: 22, Issue: 2, page 227-253
  • ISSN: 0012-9593

How to cite

top

Perron, B.. "Les cycles évanescents sont dénoués." Annales scientifiques de l'École Normale Supérieure 22.2 (1989): 227-253. <http://eudml.org/doc/82253>.

@article{Perron1989,
author = {Perron, B.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {vanishing cycles; morsification; unknotted},
language = {fre},
number = {2},
pages = {227-253},
publisher = {Elsevier},
title = {Les cycles évanescents sont dénoués},
url = {http://eudml.org/doc/82253},
volume = {22},
year = {1989},
}

TY - JOUR
AU - Perron, B.
TI - Les cycles évanescents sont dénoués
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1989
PB - Elsevier
VL - 22
IS - 2
SP - 227
EP - 253
LA - fre
KW - vanishing cycles; morsification; unknotted
UR - http://eudml.org/doc/82253
ER -

References

top
  1. [1] A. ANDREOTTI et T. FRANKEL, The Lefschetz Theorem on Hyperplane Sections (Annals of Math., vol. 69, 1959, p. 713-717). Zbl0115.38405MR31 #1685
  2. [2] J. P. DUFOUR, Bi-stabilité des fronces (C.R. Acad. Sci. Paris, t. 285, sept. 1977, p. 445-448). Zbl0362.58002MR56 #6703
  3. [3] A. M. GABRIELOV, Polar Curves and Intersection Matrices of Singularities (Interventiones Math., vol. 54, 1979, p. 15-22). Zbl0421.32011MR81g:32009
  4. [4] C. McA. GORDON, Ribbon Concordance of Knots in the 3-Sphere (Math. Ann., vol. 257, 1981, p. 157-170). Zbl0451.57001MR83a:57007
  5. [5] D. GROMOLL et W. MEYER, On Differentiable Fonctions with Isolated Critical Points (Topology, t. 8, 1969). Zbl0212.28903MR39 #7633
  6. [6] HAMM et LÊ DUNG TRANG, Un théorème de Zariski de type Lefschetz (Ann. Scient. de l'École Norm. Sup., t. 6, 1973). Zbl0276.14003MR53 #5582
  7. [7] J. HEMPEL, Residual Finiteness for Haken Manifolds, Preprint (Rice University). 
  8. [8] E. LOÏJENGA, The Complement of the Bifurcation Variety of a Simple Singularity (Invent Math., 23, 1974, p. 105-116). Zbl0278.32008MR54 #10661
  9. [9] J. MARTINET, Singularities of Smooth Fonctions (London Math. Soc. Lectures Notes, n° 58). Zbl0522.58006
  10. [10] J. MILNOR, Singular Points of Complex Hypersurfaces (Annals of Math. Studies, n° 61, 1968). Zbl0184.48405MR39 #969
  11. [11] L. P. NEUWIRTH, Knot Groups (Annals of Math. Studies, Princeton Univ. Press, n° 56). Zbl0184.48903MR31 #734
  12. [12] J. STALLING, On Fibering Certain 3-Manifolds. Topology of 3-Manifolds and Related Topics, Prentice Hall, 1961. 
  13. [13] W. THURSTON, The Geometry and Topology of 3-Manifolds (Lectures Notes, Princeton). 
  14. [14] F. WALDHAUSEN, On Irreducible 3-Manifolds which Are Sufficiently Large (Ann. Math., vol. 87, 1968, p. 56-88). Zbl0157.30603MR36 #7146
  15. [15] Y. H. WAN, Morse Theory for Two Fonctions (Topology, vol. 14, n° 3, 1975). Zbl0305.58007MR51 #14150

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.