Fonctions généralisées sphériques sur G / G

Pascale Harinck

Annales scientifiques de l'École Normale Supérieure (1990)

  • Volume: 23, Issue: 1, page 1-38
  • ISSN: 0012-9593

How to cite

top

Harinck, Pascale. "Fonctions généralisées sphériques sur $G_\mathbb {C}/G_\mathbb {R}$." Annales scientifiques de l'École Normale Supérieure 23.1 (1990): 1-38. <http://eudml.org/doc/82268>.

@article{Harinck1990,
author = {Harinck, Pascale},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {H-invariant generalized function; invariant differential operators; semisimple complex group; symmetric space; spherical functions; differential system; compact Cartan subalgebra},
language = {fre},
number = {1},
pages = {1-38},
publisher = {Elsevier},
title = {Fonctions généralisées sphériques sur $G_\mathbb \{C\}/G_\mathbb \{R\}$},
url = {http://eudml.org/doc/82268},
volume = {23},
year = {1990},
}

TY - JOUR
AU - Harinck, Pascale
TI - Fonctions généralisées sphériques sur $G_\mathbb {C}/G_\mathbb {R}$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1990
PB - Elsevier
VL - 23
IS - 1
SP - 1
EP - 38
LA - fre
KW - H-invariant generalized function; invariant differential operators; semisimple complex group; symmetric space; spherical functions; differential system; compact Cartan subalgebra
UR - http://eudml.org/doc/82268
ER -

References

top
  1. [Be] M. BERGER, Les espaces symétriques non compacts (Ann. Sci. École Norm. Sup., vol. 74, 1957, p. 85-117). Zbl0093.35602MR21 #3516
  2. [B] N. BOPP, Analyse harmonique sur un espace symétrique pseudo-riemannien, (Thèse, 1987). 
  3. [Bo] N. BOURBAKI, Groupes et algèbres de Lie, chapitres 4, 5 et 6, éléments de mathématiques, Hermann. Zbl0483.22001
  4. [F] J. FARAUT, Algèbres de Volterra et transformation de Laplace sphérique sur certains espaces symétriques ordonnés (prépublication). Zbl0656.43003
  5. [F1] J. FARAUT, Analyse harmonique sur un hyperboloïde à une nappe (exposé à la R.C.P., vol. 21, 1974). 
  6. [F. J.] M. FLENSTED-JENSEN, Discrete Series for Semisimple Symmetric Spaces (Ann. Math., vol. 111, 1980, p. 253-311). Zbl0462.22006MR81h:22015
  7. [Ha 1] HARISH-CHANDRA, Invariant Eigendistributions on a Semisimple Lie Algebra (Pub. Math., I.H.E.S., vol. 27, 1965, p. 5-54). Zbl0199.46401MR31 #4862c
  8. [Ha 2] HARISH-CHANDRA, Invariant Eigendistributions on a Semisimple Lie Group (Bull. Am. Math. Soc., vol. 69, 1963, p. 117-123). Zbl0115.10801MR26 #2545
  9. [Ha 3] HARISH-CHANDRA, Spherical Functions on a Semisimple Lie Group I, II (Am. J. Math., vol. 80, 1958, p. 241-310, p. 553-613). Zbl0093.12801MR20 #925
  10. [Ha 4] HARISH-CHANDRA, Discrete Series for Semisimple Lie Groups I (Acta Math., vol. 113, 1965, p. 241-318). Zbl0152.13402MR36 #2744
  11. [H. 1] P. HARINCK, Fonctions généralisées sur une algèbre de Lie semi-simple réelle (C.R. Acad. Sci. Paris, série I, 305, 1987, p. 853-856). Zbl0647.22009MR89b:22015
  12. [H. 2] P. HARINCK, Fonctions généralisées sphériques sur Gℂ/Gℝ (Thèse de doctorat, Université Paris-VI). 
  13. [He 1] S. HELGASON, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978. Zbl0451.53038MR80k:53081
  14. [He 2] S. HELGASON, Groups and Geometric Analysis, Academic Press, Inc. 1984. Zbl0543.58001MR86c:22017
  15. [Hi] T. HIRAÏ, Invariant Eigendistributions of Laplace Operators on Real Simple Groups II (Jpn J. Math., New Ser., vol. 2, 1976, p. 27-89). Zbl0341.22006MR58 #28273a
  16. [Lo] O. LOOS, Symmetric Spaces I, Benjamin, New York, 1962. 
  17. [O.M.1] T. OSHIMA et T. MATSUKI, Orbits on Affine Symmetric Spaces under the Action of the Isotropy Subgroups (J. Math. Soc. Jpn, vol. 32, 1980, p. 399-414). Zbl0451.53039MR81f:53043
  18. [O.M.2] T. OSHIMA et T. MATSUKI, A Description of Discrete Series for Semisimple Symmetric Spaces, (Adv. Studies Pure Math., vol. 4, 1984, p. 331-390). Zbl0577.22012MR87m:22042
  19. [R] W. ROSSMAN, Kirillov's Character Formula for Reductive Lie Groups (Inv. Math., vol. 48, 1978, p. 207-220). Zbl0372.22011MR81g:22012
  20. [S 1] S. SANO et J. SEKIGUCHI, The Plancherel Formula for S1(2, ℂ)/S1(2, ℝ) (Scient. Papers of the college of general education, vol. 30, 1980, p. 93-105). Zbl0453.22008
  21. [S 2] S. SANO, Some Properties of Spherical Distributions on Sp(2, ℂ)/Sp(2, ℝ) (Bull. of the Institute of Vocational Training, vol. 13, 1984, p. 111-116). 
  22. [S 3] S. SANO, Invariant Spherical Distributions and the Fourier Inversion Formula on G1(n, ℂ)/G1(n, ℝ) (J. Math. Soc. Jpn, n° 2, 1984, p. 191-218). Zbl0545.43010MR85h:43011
  23. [S 4] S. SANO, Distributions sphériques invariantes sur l'espace semi-simple et son c-dual (Lect. Notes Math., vol. 1243. Springer-Verlag, Berlin, New York, 1985). Zbl0627.43007MR88k:43014
  24. [Va] V. S. VARADARAJAN, Harmonic Analysis on Real Reductive Groups, Springer Verlag, Berlin, New York, 1977. Zbl0354.43001MR57 #12789

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.