On the supercuspidal representations of GL N , N the product of two primes

Philip Kutzko; David Manderscheid

Annales scientifiques de l'École Normale Supérieure (1990)

  • Volume: 23, Issue: 1, page 39-88
  • ISSN: 0012-9593

How to cite

top

Kutzko, Philip, and Manderscheid, David. "On the supercuspidal representations of ${\rm GL}_N,\;N$ the product of two primes." Annales scientifiques de l'École Normale Supérieure 23.1 (1990): 39-88. <http://eudml.org/doc/82269>.

@article{Kutzko1990,
author = {Kutzko, Philip, Manderscheid, David},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {irreducible supercuspidal representations; -adic field},
language = {eng},
number = {1},
pages = {39-88},
publisher = {Elsevier},
title = {On the supercuspidal representations of $\{\rm GL\}_N,\;N$ the product of two primes},
url = {http://eudml.org/doc/82269},
volume = {23},
year = {1990},
}

TY - JOUR
AU - Kutzko, Philip
AU - Manderscheid, David
TI - On the supercuspidal representations of ${\rm GL}_N,\;N$ the product of two primes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1990
PB - Elsevier
VL - 23
IS - 1
SP - 39
EP - 88
LA - eng
KW - irreducible supercuspidal representations; -adic field
UR - http://eudml.org/doc/82269
ER -

References

top
  1. [B] C. BUSHNELL, Hereditary Orders, Gauss Sums and Supercuspidal Representations of GLN (J. Reine Angew. Math., Vol. 375/376, 1987, pp. 184-210). Zbl0601.12025MR88e:22024
  2. [BF] C. BUSHNELL and A. FRÖHLICH, Non-Abelian Congruence Gauss Sums and p-Adic Simple Algebras (Proc. London Math. Soc., Vol. 50, 1985, pp. 207-264). Zbl0558.12007
  3. [Ca] H. CARAYOL, Representations Cuspidales du Group Linear (Ann. Sci. École Norm. Sup., Vol. 17, 1984, p. 191-225). Zbl0549.22009MR86f:22019
  4. [G] P. GÉRARDIN, Construction de séries discrètes p-adiques (Lect. Notes Math., No. 462, 1975, Springer Verlag). Zbl0302.22002MR53 #719
  5. [H] R. HOWE, Tamely Ramified Supercuspidal Representations of GLN(F) (Pac. J. Math., Vol. 73, 1977, pp. 437-460). Zbl0404.22019MR58 #11241
  6. [HM1] R. HOWE and A. MOY, Minimal K-types for GLn, 1986, preprint. 
  7. [HM2] R. HOWE and A. MOY, Hecke Algebra Isomorphisms for GLn, 1986, preprint. 
  8. [K1] P. KUTZKO, On the Supercuspidal Representations of GL2 (II, Am. J. Math., Vol. 100, 1978, pp. 705-716). Zbl0421.22012MR58 #22411b
  9. [K2] P. KUTZKO, On the Restriction of Supercuspidal Representations to Compact, open Subgroups (Duke Math. J., Vol. 52, 1985, pp. 753-764). Zbl0604.22010MR87e:22038
  10. [K3] P. KUTZKO, Towards a Classification of the Supercuspidal Representations of GLN (J. London Math. Soc., Vol. 37, 1988, pp. 265-274). Zbl0678.22009MR89e:22028
  11. [K4] P. KUTZKO, On the Supercuspidal Representations of GLN and Other Groups (Proc. Int. Cong. Math., 1986, A.M.S., 1987). Zbl0675.22009
  12. [KM1] P. KUTZKO and D. MANDERSCHEID, On the Supercuspidal Representations of GL4 (Duke Math. J., Vol. 52, 1985, pp. 841-867). Zbl0606.22011MR87e:22039
  13. [KM2] P. KUTZKO and D. MANDERSCHEID, On Intertwining Operators for GLN(F), F a Nonarchimedean Local Field (Duke Math. J., Vol. 57, 1988, pp. 275-293). Zbl0665.22006MR90c:22054
  14. [M0] A. MOY, Local Constants and the Tame Langlands Correspondence (Am. J. Math., Vol. 108, 1986, pp. 863-930). Zbl0597.12019MR88b:11081
  15. [S] J. P. SERRE, Local Fields, Springer Verlag, New York, 1979. Zbl0423.12016MR82e:12016
  16. [Sp] T. A. SPRINGER, Cusp Forms for Finite Groups, in Seminar on Algebraic Groups and Related Finite Groups (Lect. Notes Math., No. 131, 1970, Springer Verlag). Zbl0263.20024MR41 #8541
  17. [Wa] J. L. WALDSPURGER, Algèbres de Hecke et induites de représentations cuspidales, pour GL(N) (J. Reine Agew. Math., Vol. 370, 1986, pp. 127-191). Zbl0586.20020MR87m:22048
  18. [W1] A. WEIL, Basic Number Theory, Springer Verlag, New York, 1974. Zbl0326.12001MR55 #302
  19. [W2] A. WEIL, Sur certains groupes d'opérateurs unitaires (Acta. Math., Vol. 111, 1964, pp. 145-211). Zbl0203.03305MR29 #2324

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.