Reduced unstable A -modules and the modular representation theory of the symmetric groups

V. Franjou; L. Schwartz

Annales scientifiques de l'École Normale Supérieure (1990)

  • Volume: 23, Issue: 4, page 593-624
  • ISSN: 0012-9593

How to cite

top

Franjou, V., and Schwartz, L.. "Reduced unstable $A$-modules and the modular representation theory of the symmetric groups." Annales scientifiques de l'École Normale Supérieure 23.4 (1990): 593-624. <http://eudml.org/doc/82283>.

@article{Franjou1990,
author = {Franjou, V., Schwartz, L.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {unstable modules; Steenrod algebra; nilpotent modules; symmetric group},
language = {eng},
number = {4},
pages = {593-624},
publisher = {Elsevier},
title = {Reduced unstable $A$-modules and the modular representation theory of the symmetric groups},
url = {http://eudml.org/doc/82283},
volume = {23},
year = {1990},
}

TY - JOUR
AU - Franjou, V.
AU - Schwartz, L.
TI - Reduced unstable $A$-modules and the modular representation theory of the symmetric groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1990
PB - Elsevier
VL - 23
IS - 4
SP - 593
EP - 624
LA - eng
KW - unstable modules; Steenrod algebra; nilpotent modules; symmetric group
UR - http://eudml.org/doc/82283
ER -

References

top
  1. [Aw] J. F. ADAMS and C. WILKERSON, Finite H-spaces and algebras over the Steenrod algebra (Ann. Math., Vol. 111, 1980, pp. 95-143). Zbl0404.55020MR81h:55006
  2. [Bo1] N. BOURBAKI, Algèbre, Chapitre 10, Masson 1980. Zbl0455.18010MR82j:18022
  3. [Bo2] N. BOURBAKI, Algèbre, Chapitre 8, Hermann 1958. Zbl0102.27203
  4. [Ca] G. CARLSSON, G. B. Segal's Burnside ring conjecture for (ℤ/2)k, (Topology, Vol. 22, 1983, pp. 83-103). Zbl0504.55011MR84a:55007
  5. [CK] D. CARLISLE and N. KUHN, Subalgebras of the Steenrod Algebra and the action of matrices on truncated polynomial algebras (J. Alg., vol. 121, n° 2, 1989, pp. 370-387). Zbl0691.55015MR90c:55018
  6. [Ga] P. GABRIEL, Des catégories abéliennes (Bull. Soc. Math. France, Vol. 90, 1962, pp. 323-448). Zbl0201.35602MR38 #1144
  7. [GLZ] J. GUNAWARDENA, J. LANNES, S. ZARATI, Quillen's map in the mod 2 cohomology of symmetric groups, Preprint, 1987. 
  8. [HK] J. C. HARRIS and N. KUHN, Stable decompositions of classifying spaces of finite abelian p-groups, (Math. Proc. Camb. Phil. Soc., Vol. 103, 1988, pp. 427-449). Zbl0686.55007MR89d:55021
  9. [HLS] H. W. HENN, J. LANNES and L. SCHWARTZ, Analytic functors, unstable algebras and cohomology of classifying spaces (Cont. Math., Vol. 96, 1989). Zbl0683.55013MR90j:55025
  10. [Ja1] G. D. JAMES, The representation theory of the symmetric groups (SLNM, n° 682, 1978). Zbl0393.20009MR80g:20019
  11. [Ja2] G. D. JAMES, The decomposition of tensors over fields of prime characteristic, (Math. Z., Vol. 172, 1980, pp. 161-178). Zbl0438.20008MR81h:20015
  12. [JK] G. D. JAMES and A. KERBER, The representation theory of the symmetric group (Ency. Math. Appl., Vol. 16, Addison-Wesley Reading, Mass., 1981). Zbl0491.20010MR83k:20003
  13. [K] N. KUHN, The rigidity of L(n), (Proc. Seattle 1985, SLNM, 1286). Zbl0632.55004MR89a:55015
  14. [Kr] L. KRISTENSEN, On the cohomology of two-stage Postnikov systems (Acta Math., Vol. 107, 1962, pp. 73-123). Zbl0104.39704MR25 #4525
  15. [La] J. LANNES, Sur la cohomologie modulo p des p-groupes abéliens élémentaires (Proc. Durham Symp. on Homotopy Theory, LMS, Camb. Univ. Press, 1987). Zbl0654.55013MR89e:55037
  16. [LS1] J. LANNES et L. SCHWARTZ, Sur la structure des A-modules injectifs instables (Topology, Vol. 28, n° 2, 1989, pp. 153-169). Zbl0683.55016MR90h:55027
  17. [LS2] J. LANNES et L. SCHWARTZ, Foncteurs analytiques, représentations modulaires et A-modules instables (en préparation). 
  18. [LZ1] J. LANNES et S. ZARATI, Sur les U-injectifs (Ann. Scient. Ec. Norm. Sup. 19, 1986, pp. 1-31). Zbl0608.18006MR89a:55032
  19. [LZ2] J. LANNES et S. ZARATI, Foncteurs dérivés de la déstabilisation (Math. Z., Vol. 194, 1987, pp. 25-39). Zbl0627.55014MR88j:55014
  20. [Mc] I. G. MACDONALD, Symmetric functions and Hall polynomials (Clarendon Press, Oxford, 1979). Zbl0487.20007MR84g:05003
  21. [Mi] H. R. MILLER, The Sullivan conjecture on maps from classifying spaces (Ann. Math., Vol. 120, 1984, pp. 39-87). Zbl0552.55014MR85i:55012
  22. [Mi] J. MILNOR, The Steenrod algebra and its dual (Ann. Math., Vol. 67, 1958, pp. 150-171). Zbl0080.38003MR20 #6092
  23. [Mit] S. MITCHELL, On the Steinberg module, representations of the symmetric groups and the Steenrod algebra (JPAA 39, 1986, pp. 275-281). Zbl0593.20006MR87d:55020
  24. [MitP] S. MITCHELL and S. PRIDDY, Stable splittings derived from the Steinberg module (Topology, Vol. 22, 1983, pp. 285-298). Zbl0526.55010MR85f:55005
  25. [MP] W. S. MASSEY and F. P. PETERSON, The mod 2 cohomology structure of certain fibre spaces (Memoirs of the AMS 74, 1962). Zbl0168.44002MR37 #2226
  26. [Qui] D. QUILLEN, The spectrum of an equivariant cohomology ring, I, II (Ann. Math., Vol. 94, 1971, pp. 549-572 ; pp. 573-602). Zbl0247.57013MR45 #7743
  27. [Sc] L. SCHWARTZ, La filtration nilpotente de la catégorie U et la cohomologie des espaces de lacets (Proc. Louvain-la-Neuve, 1986, SLNM, 1318). Zbl0665.55003MR89f:55013
  28. [SS] L. SMITH and R. SWITZER, Polynomial algebras over the Steenrod algebras, Variations on a theorem of Adams and Wilkerson (Proc. Edinb. Math. Soc., Vol. 27, 1984, pp. 11-19). Zbl0545.55009MR85m:55021
  29. [St] N. E. STEENROD and D. B. A. EPSTEIN, Cohomology operations, Ann. of Math. Studies 50, Princ. Univ. Press, 1962. Zbl0102.38104MR26 #3056
  30. [W] R. WOOD, Splitting ∑ (ℂℙ∞ × ... × ℂℙ∞) and the action of the Steenrod squares Sqi on the polynomial ring F2 [X1, ..., Xn] (Proc. of the 2nd BCAT, SLNM, 1298). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.